286 research outputs found
Biodegradation of Perfluorooctanoic Acid by Pseudomonas Plecoglossicida Strain DD4
Organofluorines, as a pollutant, belongs to a group of substances which are very difficult to neutralize. They are part of many products of everyday use and for this reason they pollute the environment in large quantities. Perfluorinated carboxylic acids are entered into the list of the “Stockholm Convention on Persistent Organic Pollutants” in order to minimize the load on the environment by significantly reducing their use, up to their complete rejection. The DD4 strain was isolated from the soil by the enrichment method and identified using 16S rRNA method as Pseudomonas plecoglossicida. It is able to metabolize perfluorooctanoic acid (PFOA) as the only carbon source in Raymond nutrient medium with a concentration of 1000 mg/l with the release of 132 mg/l fluorine ions. In tests conducted on the biological decomposition of perfluorooctanoic acid, it was possible to quantify its residues using tandem LCMS-IT-TOF. The presented results characterize the Pseudomonas plecoglossicida DD4 strain actively utilized PFOA as the sole carbon source, which characterizes it as a candidate for the creation of biological products aimed at the utilization of organofluorine pollutants
In-beam fast-timing measurements in 103,105,107Cd
Fast-timing measurements were performed recently in the region of the
medium-mass 103,105,107Cd isotopes, produced in fusion evaporation reactions.
Emitted gamma-rays were detected by eight HPGe and five LaBr3:Ce detectors
working in coincidence. Results on new and re-evaluated half-lives are
discussed within a systematic of transition rates. The states in
103,105,107Cd are interpreted as arising from a single-particle excitation. The
half-life analysis of the states in 103,105,107Cd shows no change in
the single-particle transition strength as a function of the neutron number
Preliminary screening for microplastic concentrations in the surface water of the Ob and Tom Rivers in Siberia, Russia
This study characterizes the abundance and morphology of microplastics in surface water of the Ob River and its large tributary, the Tom River, in western Siberia. The average number of particles for two rivers ranged from 44.2 to 51.2 items per m3 or from 79.4 to 87.5 μg per m3 in the Tom River and in the Ob River, correspondingly. 93.5% of recovered microplastics were less than 1 mm in their largest dimension, the largest group (45.5% of total counts) consisted of particles with sizes range 0.30-1.00 mm
Fast-timing measurements in 95,96Mo
Half-lives of the 19/2+ and 21/2+ states in 95Mo and of the 8+ and 10+ states
in 96Mo were measured. Matrix elements for yrast transitions in 95Mo and 96Mo
are discussed.Comment: Proceedings of XIX International School on Nuclear Physics, Neutron
Physics and Applications, Varna, Bulgaria, 2011, 5 pages, 6 figure
Search for particle–vibration coupling in 65Cu
The lifetime of the 9/2 + state of 65 Cu, at 2534 keV, has been measured by fast timing techniques, in order to establish wether such state arises from a weak coupling between a p3=2 proton and the 3 octupole vibration at 3.56 MeV in the 64 Ni core. The 65 Cu nucleus was populated by the reaction 7 Li + 64 Ni at 32 MeV, at the Horia Hu- lubei National Institute of Physics and Nuclear Engineering (NIPNE) in Bucharest, and its -decay was detected by the ROSPHERE array. The measured lifetime coresponds to a B(E3) reduced transition probability to the ground state equal to 8.89 W.u., in agreement with theoretical predictions in the weak coupling limit
Understanding hysteresis in carbon dioxide sorption in porous metal-organic frameworks
Two
new isostructural microporous coordination frameworks [Mn3(Hpdc)2(pdc)2] (1) and [Mg3(Hpdc)2(pdc)2] (2) (pdc2– = pyridine-2,4-dicarboxylate) showing
primitive cubic (pcu) topology have been prepared and
characterized. The pore aperture of the channels is too narrow for
the efficient adsorption of N2; however, both compounds
demonstrate substantially higher uptake of CO2 (119.9 mL·g–1 for 1 and 102.5 mL·g–1 for 2 at 195 K, 1 bar). Despite of their structural
similarities, 2 shows a typical reversible type I isotherm
for adsorption/desorption of CO2, while 1 features
a two-step adsorption process with a very broad hysteresis between
the adsorption and desorption curves. This behavior can be explained
by a combination of density functional theory calculations, sorption,
and X-ray diffraction analysis and gives insights into the further
development of new sorbents showing adsorption/desorption hysteresis
The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines
The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of
kton liquid double phase TPC complemented by a magnetised iron
calorimeter, to be installed at the Pyh\"asalmi mine, at a distance of 2300 km
from CERN. The conventional neutrino beam is produced by 400 GeV protons
accelerated at the SPS accelerator delivering 700 kW of power. The long
baseline provides a unique opportunity to study neutrino flavour oscillations
over their 1st and 2nd oscillation maxima exploring the behaviour, and
distinguishing effects arising from and matter. In this paper we
show how this comprehensive physics case can be further enhanced and
complemented if a neutrino beam produced at the Protvino IHEP accelerator
complex, at a distance of 1160 km, and with modest power of 450 kW is aimed
towards the same far detectors. We show that the coupling of two independent
sub-MW conventional neutrino and antineutrino beams at different baselines from
CERN and Protvino will allow to measure CP violation in the leptonic sector at
a confidence level of at least for 50\% of the true values of
with a 20 kton detector. With a far detector of 70 kton, the
combination allows a sensitivity for 75\% of the true values of
after 10 years of running. Running two independent neutrino
beams, each at a power below 1 MW, is more within today's state of the art than
the long-term operation of a new single high-energy multi-MW facility, which
has several technical challenges and will likely require a learning curve.Comment: 21 pages, 12 figure
The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches
The feasibility of a next generation neutrino observatory in Europe is being
considered within the LAGUNA design study. To accommodate giant neutrino
detectors and shield them from cosmic rays, a new very large underground
infrastructure is required. Seven potential candidate sites in different parts
of Europe and at several distances from CERN are being studied: Boulby (UK),
Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland),
Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The
design study aims at the comprehensive and coordinated technical assessment of
each site, at a coherent cost estimation, and at a prioritization of the sites
within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future
Neutrino Physics", CERN, Oct. 200
Halochromic coordination polymers based on a triarylmethane dye for reversible detection of acids
Chromeazurol B (Na2HL) is a pH-sensitive (halochromic) dye based on a hydroxytriarylmethane core and two carboxylate functional groups, which makes it suitable for the synthesis of coordination polymers. Two new coordination polymers [NaZn4(H2O)3(L)3]·3THF·3H2O (1) and [Zn3(H2O)3(μ2- OH2)(μ3-OH)(HL)2(H2L)]·2THF·3H2O (2) incorporating Chromeazurol B linkers have been prepared and characterised. The structure of 1 comprises pentanuclear heterometallic {Zn4Na} nodes linked by six L3– anions to give a layered structure with a honeycomb topology. 2 crystallizes as a double-chain ribbon (ladder) structure with two types of metal node: a mononuclear Zn(II) cation and tetranuclear {Zn(II)}4 cluster. Chromeazurol B anions link each tetranuclear cluster to four individual Zn(II) cations and each Zn(II) cation with four tetranuclear clusters. Both compounds show pH-sensitivity in water solution which can be observed visually, giving the first example of a halochromic coordination polymer. The halochromic properties of 1 towards HCl vapors were systematically investigated. As-synthesized violet-grey 1 reversibly changes color from orange to pink in the presence of vapors of 2M and 7M HCl, respectively. The coordination of the Chromeazurol B anion at each color stage was examined by diffuse reflectance spectroscopy and FT-IR measurements. The remarkable stability of 1 to acid and the observed reversible and reproducible color changes provide a new design for multifunctional sensor materials
- …