75 research outputs found

    Analysis of power consumption in heterogeneous virtual machine environments

    Get PDF
    Reduction of energy consumption in Cloud computing datacenters today is a hot a research topic, as these consume large amounts of energy. Furthermore, most of the energy is used inefficiently because of the improper usage of computational resources such as CPU, storage and network. A good balance between the computing resources and performed workload is mandatory. In the context of data-intensive applications, a significant portion of energy is consumed just to keep alive virtual machines or to move data around without performing useful computation. Moreover, heterogeneity of resources increases the difficulty degree, when trying to achieve energy efficiency. Power consumption optimization requires identification of those inefficiencies in the underlying system and applications. Based on the relation between server load and energy consumption, we study the efficiency of data-intensive applications, and the penalties, in terms of power consumption, that are introduced by different degrees of heterogeneity of the virtual machines characteristics in a cluster

    Analysis of power consumption in heterogeneous virtual machine environments

    Get PDF
    Reduction of energy consumption in Cloud computing datacenters today is a hot a research topic, as these consume large amounts of energy. Furthermore, most of the energy is used inefficiently because of the improper usage of computational resources such as CPU, storage and network. A good balance between the computing resources and performed workload is mandatory. In the context of data-intensive applications, a significant portion of energy is consumed just to keep alive virtual machines or to move data around without performing useful computation. Moreover, heterogeneity of resources increases the difficulty degree, when trying to achieve energy efficiency. Power consumption optimization requires identification of those inefficiencies in the underlying system and applications. Based on the relation between server load and energy consumption, we study the efficiency of data-intensive applications, and the penalties, in terms of power consumption, that are introduced by different degrees of heterogeneity of the virtual machines characteristics in a cluster

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    At particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) [1]. The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower [2]. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m and energy E, within a cone of angular size m/E around the emitter [3]. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. Here we show the first direct observation of the QCD dead-cone by using new iterative declustering techniques [4, 5] to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes the first direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron.In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQm_{\rm{Q}} and energy EE, within a cone of angular size mQm_{\rm{Q}}/EE around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics

    Odanacatib for the treatment of postmenopausal osteoporosis : Results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study

    No full text
    Background Odanacatib, a cathepsin K inhibitor, reduces bone resorption while maintaining bone formation. Previous work has shown that odanacatib increases bone mineral density in postmenopausal women with low bone mass. We aimed to investigate the efficacy and safety of odanacatib to reduce fracture risk in postmenopausal women with osteoporosis. Methods The Long-term Odanacatib Fracture Trial (LOFT) was a multicentre, randomised, double-blind, placebo-controlled, event-driven study at 388 outpatient clinics in 40 countries. Eligible participants were women aged at least 65 years who were postmenopausal for 5 years or more, with a femoral neck or total hip bone mineral density T-score between −2·5 and −4·0 if no previous radiographic vertebral fracture, or between −1·5 and −4·0 with a previous vertebral fracture. Women with a previous hip fracture, more than one vertebral fracture, or a T-score of less than −4·0 at the total hip or femoral neck were not eligible unless they were unable or unwilling to use approved osteoporosis treatment. Participants were randomly assigned (1:1) to either oral odanacatib (50 mg once per week) or matching placebo. Randomisation was done using an interactive voice recognition system after stratification for previous radiographic vertebral fracture, and treatment was masked to study participants, investigators and their staff, and sponsor personnel. If the study completed before 5 years of double-blind treatment, consenting participants could enrol in a double-blind extension study (LOFT Extension), continuing their original treatment assignment for up to 5 years from randomisation. Primary endpoints were incidence of vertebral fractures as assessed using radiographs collected at baseline, 6 and 12 months, yearly, and at final study visit in participants for whom evaluable radiograph images were available at baseline and at least one other timepoint, and hip and non-vertebral fractures adjudicated as being a result of osteoporosis as assessed by clinical history and radiograph. Safety was assessed in participants who received at least one dose of study drug. The adjudicated cardiovascular safety endpoints were a composite of cardiovascular death, myocardial infarction, or stroke, and new-onset atrial fibrillation or flutter. Individual cardiovascular endpoints and death were also assessed. LOFT and LOFT Extension are registered with ClinicalTrials.gov (number NCT00529373) and the European Clinical Trials Database (EudraCT number 2007-002693-66). Findings Between Sept 14, 2007, and Nov 17, 2009, we randomly assigned 16 071 evaluable patients to treatment: 8043 to odanacatib and 8028 to placebo. After a median follow-up of 36·5 months (IQR 34·43–40·15) 4297 women assigned to odanacatib and 3960 assigned to placebo enrolled in LOFT Extension (total median follow-up 47·6 months, IQR 35·45–60·06). In LOFT, cumulative incidence of primary outcomes for odanacatib versus placebo were: radiographic vertebral fractures 3·7% (251/6770) versus 7·8% (542/6910), hazard ratio (HR) 0·46, 95% CI 0·40–0·53; hip fractures 0·8% (65/8043) versus 1·6% (125/8028), 0·53, 0·39–0·71; non-vertebral fractures 5·1% (412/8043) versus 6·7% (541/8028), 0·77, 0·68–0·87; all p<0·0001. Combined results from LOFT plus LOFT Extension for cumulative incidence of primary outcomes for odanacatib versus placebo were: radiographic vertebral fractures 4·9% (341/6909) versus 9·6% (675/7011), HR 0·48, 95% CI 0·42–0·55; hip fractures 1·1% (86/8043) versus 2·0% (162/8028), 0·52, 0·40–0·67; non-vertebral fractures 6·4% (512/8043) versus 8·4% (675/8028), 0·74, 0·66–0·83; all p<0·0001. In LOFT, the composite cardiovascular endpoint of cardiovascular death, myocardial infarction, or stroke occurred in 273 (3·4%) of 8043 patients in the odanacatib group versus 245 (3·1%) of 8028 in the placebo group (HR 1·12, 95% CI 0·95–1·34; p=0·18). New-onset atrial fibrillation or flutter occurred in 112 (1·4%) of 8043 patients in the odanacatib group versus 96 (1·2%) of 8028 in the placebo group (HR 1·18, 0·90–1·55; p=0·24). Odanacatib was associated with an increased risk of stroke (1·7% [136/8043] vs 1·3% [104/8028], HR 1·32, 1·02–1·70; p=0·034), but not myocardial infarction (0·7% [60/8043] vs 0·9% [74/8028], HR 0·82, 0·58–1·15; p=0·26). The HR for all-cause mortality was 1·13 (5·0% [401/8043] vs 4·4% [356/8028], 0·98–1·30; p=0·10). When data from LOFT Extension were included, the composite of cardiovascular death, myocardial infarction, or stroke occurred in significantly more patients in the odanacatib group than in the placebo group (401 [5·0%] of 8043 vs 343 [4·3%] of 8028, HR 1·17, 1·02–1·36; p=0·029, as did stroke (2·3% [187/8043] vs 1·7% [137/8028], HR 1·37, 1·10–1·71; p=0·0051). Interpretation Odanacatib reduced the risk of fracture, but was associated with an increased risk of cardiovascular events, specifically stroke, in postmenopausal women with osteoporosis. Based on the overall balance between benefit and risk, the study's sponsor decided that they would no longer pursue development of odanacatib for treatment of osteoporosis

    Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV

    No full text
    International audienceAnisotropic flow coefficients, vn_{n}, non-linear flow mode coefficients, χn,mk_{n,mk}, and correlations among different symmetry planes, ρn,mk_{n,mk} are measured in Pb-Pb collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval 0.2 < pT_{T}< 5.0 GeV/c within the pseudorapidity interval 0.4 < |η| < 0.8 as a function of collision centrality. The vn_{n} coefficients and χn,mk_{n,mk} and ρn,mk_{n,mk} are presented up to the ninth and seventh harmonic order, respectively. Calculations suggest that the correlations measured in different symmetry planes and the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios of the medium created in heavy-ion collisions. The comparison between these measurements and those at lower energies and calculations from hydrodynamic models places strong constraints on the initial conditions and transport properties of the system.[graphic not available: see fulltext

    J/ψ\psi production at midrapidity in p-Pb collisions at sNN=8.16\sqrt{s_{\rm NN}} = 8.16 TeV

    No full text

    Measurement of inclusive and leading subjet fragmentation in pp and Pb–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV

    No full text
    This article presents new measurements of the fragmentation properties of jets in both proton--proton (pp) and heavy-ion collisions with the ALICE experiment at the Large Hadron Collider (LHC). We report distributions of the fraction zrz_r of transverse momentum carried by subjets of radius rr within jets of radius RR. Charged-particle jets are reconstructed at midrapidity using the anti-kTk_{\rm{T}} algorithm with jet radius R=0.4R=0.4, and subjets are reconstructed by reclustering the jet constituents using the anti-kTk_{\rm{T}} algorithm with radii r=0.1r=0.1 and r=0.2r=0.2. In proton--proton collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the zrz_r distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet fragmentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The zrz_r distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark-gluon plasma (QGP). We find indications that there is a turnover in the ratio between the distributions in \mbox{Pb--Pb} and pp\mathrm{p\kern-0.05em p} collisions as zr1z_r \rightarrow 1, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP.This article presents new measurements of the fragmentation properties of jets in both proton–proton (pp) and heavy-ion collisions with the ALICE experiment at the Large Hadron Collider (LHC). We report distributions of the fraction zr_{r} of transverse momentum carried by subjets of radius r within jets of radius R. Charged-particle jets are reconstructed at midrapidity using the anti-kT_{T} algorithm with jet radius R = 0.4, and subjets are reconstructed by reclustering the jet constituents using the anti-kT_{T} algorithm with radii r = 0.1 and r = 0.2. In proton–proton collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the zr_{r} distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet frag- mentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The zr_{r} distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark–gluon plasma (QGP). We find no significant modification of zr_{r} distributions in Pb–Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for zr_{r}< 0.95, as predicted by several jet quenching models. As zr_{r} → 1 our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP.[graphic not available: see fulltext]This article presents new measurements of the fragmentation properties of jets in both proton-proton (pp) and heavy-ion collisions with the ALICE experiment at the LHC. We report distributions of the fraction zrz_r of transverse momentum carried by subjets of radius rr within jets of radius RR. Charged-particle jets are reconstructed at midrapidity using the anti-kTk_{\rm{T}} algorithm with jet radius R=0.4R=0.4, and subjets are reconstructed by reclustering the jet constituents using the anti-kTk_{\rm{T}} algorithm with radii r=0.1r=0.1 and r=0.2r=0.2. In pp collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the zrz_r distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet fragmentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The zrz_r distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark-gluon plasma (QGP). We find no significant modification of zrz_r distributions in Pb-Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for zr<0.95z_r<0.95, as predicted by several jet quenching models. As zr1z_r \rightarrow 1 our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP
    corecore