702 research outputs found
Heavy quark studies with nuclear emulsions
Emulsions have started particle physics with the discovery of natural
radioactivity by Becquerel in 1896. The development of the ``nuclear
emulsions'' made it possible to detect tracks of single particle and to perform
detailed measurements of their interactions. The discovery of the pion in 1947
was the first, spectacular demonstration of their unique features for the
direct observation of the production and decay of short-lived particles, with
negligible or very low background. In particular, these features are now
exploited for studies of heavy quark physics in experiments where nuclear
emulsions are combined with electronic detectors and profit is taken of the
remarkable technological progress in automated analysis. In these experiments,
neutrinos provide a selective probe for specific quark flavors. Interesting
results on charm production and decay are expected in the very near future.Comment: To be published on the book for the eightieth birthday of Roberto
Salmeron, World Scientifi
Future neutrino oscillation facilities
The recent discovery that neutrinos have masses opens a wide new field of
experimentation. Accelerator-made neutrinos are essential in this program.
Ideas for future facilities include high intensity muon neutrino beams from
pion decay (`SuperBeam'), electron neutrino beams from nuclei decays (`Beta
Beam'), or muon and electron neutrino beams from muon decay (`Neutrino
Factory'), each associated with one or several options for detector systems.
Each option offers synergetic possibilities, e.g. some of the detectors can be
used for proton decay searches, while the Neutrino Factory is a first step
towards muon colliders.
A summary of the perceived virtues and shortcomings of the various options,
and a number of open questions are presented.Comment: Originally written for the CERN Strategy Grou
The inclusive reaction pp=pX at the CERN ISR
Experiments at the CERN ISR have given evidence for proton single-dissociation processes where the missing mass of the system X, measured on the proton which is observed in the reaction p + p → p + X, presents a distribution extending up to large values , in the 10 GeV range. These processes globally account for ∼15% of the inelastic p-p cross section. Evidence for such a distinct class of inelastic phenomena is also provided by long-range rapidity correlations and clustering. The nature of these processes appears to be predominantly diffractive. The physics which emerges from ISR observations is discussed , together with a presentation of present and planned lines of experimental investigation at the ISR
Sensitivity on Earth Core and Mantle densities using Atmospheric Neutrinos
Neutrino radiography may provide an alternative tool to study the very deep
structures of the Earth. Though these measurements are unable to resolve the
fine density layer features, nevertheless the information which can be obtained
are independent and complementary to the more conventional seismic studies. The
aim of this paper is to assess how well the core and mantle averaged densities
can be reconstructed through atmospheric neutrino radiography. We find that
about a 2% sensitivity for the mantle and 5% for the core could be achieved for
a ten year data taking at an underwater km^3 Neutrino Telescope. This result
does not take into account systematics related to the details of the
experimental apparatus.Comment: 11 pages, 11 figures, accepted for publication in JCA
Response to electrons and pions of the calorimeter for the CHORUS experiment
We built and tested on charged particle beams the high energy-resolution calorimeter for the CHORUS experiment, which searches for nu(mu)-nu(tau) oscillations in the CERN Wide Band Neutrino Beam. This calorimeter is longitudinally divided into three sectors: one electromagnetic and two hadronic. The first two upstream sectors are made of lead and plastic scintillating fibers in the volume ratio of 4/1, and they represent the first large scale application of this technique for combined electromagnetic and hadronic calorimetry. The third sector is made of a sandwich of lead plates and scintillator strips and complements the measurement of the hadronic energy flow. In this paper, we briefly describe the calorimeter design and we show results on its response to electrons and pions, obtained from tests performed at the CERN SPS and PS. An energy resolution of sigma(E)/E=(32.3+/-2.4)%/root E(GeV)+(1.4+/-0.7)% was achieved for pions, and sigma(E)/E=(13.8+/-0.9)%/root V(GeV)+(-0.2+/-0.4)% for electrons
Observation of the geometry of colliding proton-proton beams by means of beam-beam elastic collisions
Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network
We have studied the performance of a new algorithm for electron/pion
separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion
films. The software for separation consists of two parts: a shower
reconstruction algorithm and a Neural Network that assigns to each
reconstructed shower the probability to be an electron or a pion. The
performance has been studied for the ECC of the OPERA experiment [1].
The separation algorithm has been optimized by using a detailed Monte
Carlo simulation of the ECC and tested on real data taken at CERN (pion beams)
and at DESY (electron beams). The algorithm allows to achieve a 90% electron
identification efficiency with a pion misidentification smaller than 1% for
energies higher than 2 GeV
- …
