702 research outputs found

    Heavy quark studies with nuclear emulsions

    Get PDF
    Emulsions have started particle physics with the discovery of natural radioactivity by Becquerel in 1896. The development of the ``nuclear emulsions'' made it possible to detect tracks of single particle and to perform detailed measurements of their interactions. The discovery of the pion in 1947 was the first, spectacular demonstration of their unique features for the direct observation of the production and decay of short-lived particles, with negligible or very low background. In particular, these features are now exploited for studies of heavy quark physics in experiments where nuclear emulsions are combined with electronic detectors and profit is taken of the remarkable technological progress in automated analysis. In these experiments, neutrinos provide a selective probe for specific quark flavors. Interesting results on charm production and decay are expected in the very near future.Comment: To be published on the book for the eightieth birthday of Roberto Salmeron, World Scientifi

    Future neutrino oscillation facilities

    Get PDF
    The recent discovery that neutrinos have masses opens a wide new field of experimentation. Accelerator-made neutrinos are essential in this program. Ideas for future facilities include high intensity muon neutrino beams from pion decay (`SuperBeam'), electron neutrino beams from nuclei decays (`Beta Beam'), or muon and electron neutrino beams from muon decay (`Neutrino Factory'), each associated with one or several options for detector systems. Each option offers synergetic possibilities, e.g. some of the detectors can be used for proton decay searches, while the Neutrino Factory is a first step towards muon colliders. A summary of the perceived virtues and shortcomings of the various options, and a number of open questions are presented.Comment: Originally written for the CERN Strategy Grou

    The inclusive reaction pp=pX at the CERN ISR

    Get PDF
    Experiments at the CERN ISR have given evidence for proton single-dissociation processes where the missing mass of the system X, measured on the proton which is observed in the reaction p + p → p + X, presents a distribution extending up to large values , in the 10 GeV range. These processes globally account for ∼15% of the inelastic p-p cross section. Evidence for such a distinct class of inelastic phenomena is also provided by long-range rapidity correlations and clustering. The nature of these processes appears to be predominantly diffractive. The physics which emerges from ISR observations is discussed , together with a presentation of present and planned lines of experimental investigation at the ISR

    Sensitivity on Earth Core and Mantle densities using Atmospheric Neutrinos

    Get PDF
    Neutrino radiography may provide an alternative tool to study the very deep structures of the Earth. Though these measurements are unable to resolve the fine density layer features, nevertheless the information which can be obtained are independent and complementary to the more conventional seismic studies. The aim of this paper is to assess how well the core and mantle averaged densities can be reconstructed through atmospheric neutrino radiography. We find that about a 2% sensitivity for the mantle and 5% for the core could be achieved for a ten year data taking at an underwater km^3 Neutrino Telescope. This result does not take into account systematics related to the details of the experimental apparatus.Comment: 11 pages, 11 figures, accepted for publication in JCA

    Response to electrons and pions of the calorimeter for the CHORUS experiment

    Get PDF
    We built and tested on charged particle beams the high energy-resolution calorimeter for the CHORUS experiment, which searches for nu(mu)-nu(tau) oscillations in the CERN Wide Band Neutrino Beam. This calorimeter is longitudinally divided into three sectors: one electromagnetic and two hadronic. The first two upstream sectors are made of lead and plastic scintillating fibers in the volume ratio of 4/1, and they represent the first large scale application of this technique for combined electromagnetic and hadronic calorimetry. The third sector is made of a sandwich of lead plates and scintillator strips and complements the measurement of the hadronic energy flow. In this paper, we briefly describe the calorimeter design and we show results on its response to electrons and pions, obtained from tests performed at the CERN SPS and PS. An energy resolution of sigma(E)/E=(32.3+/-2.4)%/root E(GeV)+(1.4+/-0.7)% was achieved for pions, and sigma(E)/E=(13.8+/-0.9)%/root V(GeV)+(-0.2+/-0.4)% for electrons

    Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network

    Get PDF
    We have studied the performance of a new algorithm for electron/pion separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The software for separation consists of two parts: a shower reconstruction algorithm and a Neural Network that assigns to each reconstructed shower the probability to be an electron or a pion. The performance has been studied for the ECC of the OPERA experiment [1]. The e/πe/\pi separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data taken at CERN (pion beams) and at DESY (electron beams). The algorithm allows to achieve a 90% electron identification efficiency with a pion misidentification smaller than 1% for energies higher than 2 GeV
    corecore