3,506 research outputs found

    Removal and transformation of hexavalent chromium in sequencing batch reactor

    Get PDF
    The objectives of this study are to evaluate the efficiency of removal of hexavalent chromium (Cr(VI)) in a sequencing batch reactor (SBR) and to ascertain the fate of Cr(VI) in the treatment process. An SBR was operated with the FILL, REACT, SETTLE, DRAW and IDLE periods in the time ratio of 2:12:2:1.5:6.5 for a cycle time of 24 h. The study was divided into 5 phases with the addition of 0.5, 2.0, 3.0 and 5.0 mg/ℓ of Cr(VI) in Phases II, III, IV and V for a duration of 46, 75, 43 and 16 operational cycles, respectively. The Cr(VI) removal efficiencies for SBR were found to be 79.8, 88.4 and 99.8% in Phases III, IV and V, respectively. The results revealed that Cr(VI) removal efficiency improved with acclimated activated sludge. Determination of Cr in the suspended sludge showed that around 95% of the Cr species were Cr(III). Determination of Cr concentration profiles during the FILL and REACT periods showed that the predominant species was Cr(III) as Cr(VI) was bio-reduced. The proposed Cr(VI) removal mechanism involves bioreduction to Cr(III) which was subsequently precipitated and adsorbed by activated sludge. Precipitation rather than sorption is envisaged to be the main path of removal of Cr(III) from the solution.Keywords: Sequencing batch reactor, hexavalent chromium, removal, transformation, mechanis

    Dust in Interstellar Clouds, Evolved Stars and Supernovae

    Full text link
    Outflows of pre-main-sequence stars drive shocks into molecular material within 0.01 - 1 pc of the young stars. The shock-heated gas emits infrared, millimeter and submillimeter lines of many species including. Dust grains are important charge carriers and play a large role in coupling the magnetic field and flow of neutral gas. Some effects of the dust on the dynamics of oblique shocks began to emerge in the 1990s. However, detailed models of these shocks are required for the calculation of the grain sputtering contribution to gas phase abundances of species producing observed emissions. We are developing such models. Some of the molecular species introduced into the gas phase by sputtering in shocks or by thermally driven desorption in hot cores form on grain surfaces. Recently laboratory studies have begun to contribute to the understanding of surface reactions and thermally driven desorption important for the chemistry of star forming clouds. Dusty plasmas are prevalent in many evolved stars just as well as in star forming regions. Radiation pressure on dust plays a significant role in mass loss from some post-main-sequence stars. The mechanisms leading to the formation of carbonaceous dust in the stellar outflows are similar to those important for soot formation in flames. However, nucleation in oxygen-rich outflows is less well understood and remains a challenging research area. Dust is observed in supernova ejecta that have not passed through the reverse shocks that develop in the interaction of ejecta with ambient media. Dust is detected in high redshift galaxies that are sufficiently young that the only stars that could have produced the dust were so massive that they became supernovae. Consequently, the issue of the survival of dust in strong supernova shocks is of considerable interest.Comment: 4 pages, to be published in the proceedings of Fifth International Conference on Physics of Dusty Plasma

    Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent.

    Get PDF
    NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or 'danger signals'. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis

    Beyond the ego network: The effect of distant connections on node anonymity

    Full text link
    Ensuring privacy of individuals is of paramount importance to social network analysis research. Previous work assessed anonymity in a network based on the non-uniqueness of a node's ego network. In this work, we show that this approach does not adequately account for the strong de-anonymizing effect of distant connections. We first propose the use of d-k-anonymity, a novel measure that takes knowledge up to distance d of a considered node into account. Second, we introduce anonymity-cascade, which exploits the so-called infectiousness of uniqueness: mere information about being connected to another unique node can make a given node uniquely identifiable. These two approaches, together with relevant "twin node" processing steps in the underlying graph structure, offer practitioners flexible solutions, tunable in precision and computation time. This enables the assessment of anonymity in large-scale networks with up to millions of nodes and edges. Experiments on graph models and a wide range of real-world networks show drastic decreases in anonymity when connections at distance 2 are considered. Moreover, extending the knowledge beyond the ego network with just one extra link often already decreases overall anonymity by over 50%. These findings have important implications for privacy-aware sharing of sensitive network data

    Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near Infra-Red

    Full text link
    Optical resonances spanning the Near and Short Infra-Red spectral regime were exhibited experimentally by arrays of plasmonic nano-particles with concave cross-section. The concavity of the particle was shown to be the key ingredient for enabling the broad band tunability of the resonance frequency, even for particles with dimensional aspect ratios of order unity. The atypical flexibility of setting the resonance wavelength is shown to stem from a unique interplay of local geometry with surface charge distributions

    Transient evolution of C-type shocks in dusty regions of varying density

    Full text link
    Outflows of young stars drive shocks into dusty, molecular regions. Most models of such shocks assume that they are steady and propagating perpendicular to the magnetic field. Real shocks often violate both of these assumptions and the media through which they propagate are inhomogeneous. We use the code employed previously to produce the first time-dependent simulations of fast-mode, oblique C-type shocks interacting with density perturbations. We include a self-consistent calculation of the thermal and ionisation balances and a fluid treatment of grains. We identify features that develop when a multifluid shock encounters a density inhomogeneity to investigate whether any part of the precursor region ever behaves in a quasi-steady fashion. If it does the shock may be modelled approximately without solving the time-dependent hydromagnetic equations. Simulations were made for initially steady oblique C-type shocks encountering density inhomogeneities. For a semi-finite inhomogeneity with a density larger than the surrounding medium, a transmitted shock evolves from being J-type to a steady C-type shock on a timescale comparable to the ion-flow time through it. A sufficiently upstream part of the precursor of an evolving J-type shock is quasi-steady. The ion-flow timescale is also relevant for the evolution of a shock moving into a region of decreasing density. The models for shocks propagating into regions in which the density increases and then decreases to its initial value cannot be entirely described in terms of the results obtained for monotonically increasing and decreasing densities. For the latter model, the long-term evolution to a C-type shock cannot be approximated by quasi-steady models.Comment: 11 pages, 9 figure

    Analysis of Reporting Adverse Drug Reactions in Paediatric Patients in a University Hospital in the Netherlands

    Get PDF
    AIMS: The risk to develop adverse drug reactions (ADRs) is high for paediatric patients. This is, amongst other reasons, due to the inevitable use of off-label and unlicensed medicines. Moreover, there is limited knowledge on ADRs in children. Thus, adequate recognition may be challenging. The lack of dedicated studies and the voluntary nature of pharmacovigilance systems used to gain insight into the characteristics of ADRs contribute to this problem. The goal of this study is to identify whether ADRs in paediatric patients are adequately documented by the medical team and whether they are subsequently reported to the national pharmacovigilance system. METHODS: All patients admitted to the paediatric medium care of the Radboudumc Amalia Children's hospital during 1 month, and using one or more drugs, were included. Two researchers analysed retrospectively and independently the number of possible ADRs in the medical records. The ADRs were listed per paediatric subspecialty, to evaluate any differences in documentation and reporting of the ADRs. Subsequently, the causality, severity, and seriousness of the ADRs were assessed. The ADRs were categorised by system organ class and drug class. The national pharmacovigilance centre was consulted to check if there were any reports coming from our hospital and to collect the total number of reports. RESULTS: The medical records of 301 patients were analysed, 81 patients were suffering from one or more ADRs. In total 132 suspected ADRs were found, divided among 19 different paediatric subspecialties. Numbers were too small to investigate the differences in ADR documentation. Of these found ADRs, 55% were not explicitly noted as such in the medical records by the treating physician. None of the ADRs were reported to the national pharmacovigilance centre. Most ADRs scored 'possible' in the causality assessment, were mild or moderate, and a small number were serious. The ADRs occurred in 25 different organ systems. In total 25 different drug classes were involved. CONCLUSIONS: The results of the present study show that a large number of ADRs are not registered in the medical records and are not reported to the national pharmacovigilance system. Furthermore, it is shown that the number of ADRs occurring at our centre is much higher than the number reported to the national pharmacovigilance centre. Only an average of 513 ADRs in paediatric patients are reported per year nationwide, suggesting that there is extensive underreporting

    Electric field tunable superconductor-semiconductor coupling in Majorana nanowires

    Get PDF
    We study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify the coupling strength, which has consequences for the proximity induced superconducting gap, effective g-factor, and spin-orbit coupling, which all play a key role in understanding Majorana physics. We further show that level repulsion due to spin-orbit coupling in a finite size system can lead to seemingly stable zero bias conductance peaks, which mimic the behavior of Majorana zero modes. Our results improve the understanding of realistic Majorana nanowire systems.Comment: 10 pages, 5 figures, supplemental information as ancillary fil
    • 

    corecore