1,054 research outputs found

    Deformation Quantization: Quantum Mechanics Lives and Works in Phase-Space

    Get PDF
    Wigner's quasi-probability distribution function in phase-space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum transport in quantum optics; nuclear physics; decoherence (eg, quantum computing); quantum chaos; "Welcher Weg" discussions; semiclassical limits. It is also of importance in signal processing. Nevertheless, a remarkable aspect of its internal logic, pioneered by Moyal, has only emerged in the last quarter-century: It furnishes a third, alternative, formulation of Quantum Mechanics, independent of the conventional Hilbert Space, or Path Integral formulations. In this logically complete and self-standing formulation, one need not choose sides--coordinate or momentum space. It works in full phase-space, accommodating the uncertainty principle. This is an introductory overview of the formulation with simple illustrations.Comment: LaTeX, 22 pages, 2 figure

    Dirac brackets from magnetic backgrounds

    Get PDF
    In symplectic mechanics, the magnetic term describing the interaction between a charged particle and an external magnetic field has to be introduced by hand. On the contrary, in generalised complex geometry, such magnetic terms in the symplectic form arise naturally by means of B-transformations. Here we prove that, regarding classical phase space as a generalised complex manifold, the transformation law for the symplectic form under the action of a weak magnetic field gives rise to Dirac's prescription for Poisson brackets in the presence of constraints.Comment: 9 page

    Area Potentials and Deformation Quantization

    Get PDF
    Systems built out of N-body interactions, beyond 2-body interactions, are formulated on the plane, and investigated classically and quantum mechanically (in phase space). Their Wigner Functions--the density matrices in phase-space quantization--are given and analyzed.Comment: LaTeX, 7 page

    The Harari-Shupe preon model and nonrelativistic quantum phase space

    Full text link
    We propose that the whole algebraic structure of the Harari-Shupe rishon model originates via a Dirac-like linearization of quadratic form x^2+p^2, with position and momentum satisfying standard commutation relations. The scheme does not invoke the concept of preons as spin-1/2 subparticles, thus evading the problem of preon confinement, while fully explaining all symmetries emboded in the Harari-Shupe model. Furthermore, the concept of quark colour is naturally linked to the ordering of rishons. Our scheme leads to group U(1)xSU(3) combined with SU(2), with two of the SU(2) generators not commuting with reflections. An interpretation of intra-generation quark-lepton transformations in terms of genuine rotations and reflections in phase space is proposed

    The Vector-Tensor Supermultiplet with Gauged Central Charge

    Get PDF
    The vector-tensor multiplet is coupled off-shell to an N=2 vector multiplet such that its central charge transformations are realized locally. A gauged central charge is a necessary prerequisite for a coupling to supergravity and the strategy underlying our construction uses the potential for such a coupling as a guiding principle. The results for the action and transformation rules take a nonlinear form and necessarily include a Chern-Simons term. After a duality transformation the action is encoded in a homogeneous holomorphic function consistent with special geometry.Comment: 8 pages, LATE

    A Requirement-centric Approach to Web Service Modeling, Discovery, and Selection

    Get PDF
    Service-Oriented Computing (SOC) has gained considerable popularity for implementing Service-Based Applications (SBAs) in a flexible\ud and effective manner. The basic idea of SOC is to understand users'\ud requirements for SBAs first, and then discover and select relevant\ud services (i.e., that fit closely functional requirements) and offer\ud a high Quality of Service (QoS). Understanding usersÂ’ requirements\ud is already achieved by existing requirement engineering approaches\ud (e.g., TROPOS, KAOS, and MAP) which model SBAs in a requirement-driven\ud manner. However, discovering and selecting relevant and high QoS\ud services are still challenging tasks that require time and effort\ud due to the increasing number of available Web services. In this paper,\ud we propose a requirement-centric approach which allows: (i) modeling\ud usersÂ’ requirements for SBAs with the MAP formalism and specifying\ud required services using an Intentional Service Model (ISM); (ii)\ud discovering services by querying the Web service search engine Service-Finder\ud and using keywords extracted from the specifications provided by\ud the ISM; and(iii) selecting automatically relevant and high QoS services\ud by applying Formal Concept Analysis (FCA). We validate our approach\ud by performing experiments on an e-books application. The experimental\ud results show that our approach allows the selection of relevant and\ud high QoS services with a high accuracy (the average precision is\ud 89.41%) and efficiency (the average recall is 95.43%)

    Wigner phase space distribution as a wave function

    Full text link
    We demonstrate that the Wigner function of a pure quantum state is a wave function in a specially tuned Dirac bra-ket formalism and argue that the Wigner function is in fact a probability amplitude for the quantum particle to be at a certain point of the classical phase space. Additionally, we establish that in the classical limit, the Wigner function transforms into a classical Koopman-von Neumann wave function rather than into a classical probability distribution. Since probability amplitude need not be positive, our findings provide an alternative outlook on the Wigner function's negativity.Comment: 6 pages and 2 figure

    From extended phase space dynamics to fluid theory

    Full text link
    We derive a fluid theory for spin-1/2 particles starting from an extended kinetic model based on a spin-projected density matrix formalism. The evolution equation for the spin density is found to contain a pressure-like term. We give an example where this term is important by looking at a linear mode previously found in a spin kinetic model.Comment: 4 page

    Noncommutative effective theory of vortices in a complex scalar field

    Get PDF
    We derive a noncommutative theory description for vortex configurations in a complex field in 2+1 dimensions. We interpret the Magnus force in terms of the noncommutativity, and obtain some results for the quantum dynamics of the system of vortices in that context

    Renormalization Group Functional Equations

    Full text link
    Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories, and to gain insight into the interplay between continuous and discrete rescaling. With minimal assumptions, the methods produce continuous flows from step-scaling {\sigma} functions, and lead to exact functional relations for the local flow {\beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {\sigma} are sometimes not true fixed points under continuous changes in scale, and zeroes of {\beta} do not necessarily signal fixed points of the flow, but instead may only indicate turning points of the trajectories.Comment: A physical model with a limit cycle added as section IV, along with reference
    • …
    corecore