509 research outputs found
Cell proliferation and differentiation kinetics during spermatogenesis in Hydra carnea
Spermatogenesis inHydra carnea was investigated. The cell proliferation and differentiation kinetics of intermediates in the spermatogenesis pathway were determined, using quantitative determinations of cell abundance, pulse and continuous labelling with3H-thymidine and nuclear DNA measurements. Testes develop in the ectoderm of male hydra as a result of interstitial cell proliferation. Gonial stem cells and proliferating spermatogonia have cell cycles of 28 h and 22 h, respectively. Stem cells undergo four, five or six cell divisions prior to meiosis which includes a premeiotic S+G2 phase of 20 h followed by a long meiotic prophase (22 h).
Spermatid differentiation requires 12–29 h. When they first appear, testes contain only proliferating spermatogonia; meiotic and postmeiotic cells appear after 2 and 3 days, respectively and release of mature sperm begins after 4 days. Mature testes produce about 27,000 sperm per day over a period of 4–6 days: about 220 gonial stem cells per testis are required to support this level of sperm differentiation. Further results indicate that somatic (e.g. nematocyte) differentiation does not occur in testes although it continues normally in ectodermal tissue outside testes. Our results support the hypothesis that spermatogenesis is controlled locally in regions of the ectoderm where testes develop
Panoramic optical and near-infrared SETI instrument: prototype design and testing
The Pulsed All-sky Near-infrared Optical Search for ExtraTerrestrial
Intelligence (PANOSETI) is an instrument program that aims to search for fast
transient signals (nano-second to seconds) of artificial or astrophysical
origin. The PANOSETI instrument objective is to sample the entire observable
sky during all observable time at optical and near-infrared wavelengths over
300 - 1650 nm. The PANOSETI instrument is designed with a number of modular
telescope units using Fresnel lenses (0.5m) arranged on two geodesic
domes in order to maximize sky coverage. We present the prototype design
and tests of these modular Fresnel telescope units. This consists of the design
of mechanical components such as the lens mounting and module frame. One of the
most important goals of the modules is to maintain the characteristics of the
Fresnel lens under a variety of operating conditions. We discuss how we account
for a range of operating temperatures, humidity, and module orientations in our
design in order to minimize undesirable changes to our focal length or angular
resolution.Comment: 12 pages, 8 figures, 1 tabl
Recommended from our members
On designing dependable services with diverse off-the-shelf SQL servers
Predicting outcome of internet-based treatment for depressive symptoms.
In this study we explored predictors and moderators of response to Internet-based cognitive behavioral therapy (CBT) and Internet-based problem-solving therapy (PST) for depressive symptoms. The sample consisted of 263 participants with moderate to severe depressive symptoms. Of those, 88 were randomized to CBT, 88 to PST and 87 to a waiting list control condition. Outcomes were improvement and clinically significant change in depressive symptoms after 8 weeks. Higher baseline depression and higher education predicted improvement, while higher education, less avoidance behavior and decreased rational problem-solving skills predicted clinically significant change across all groups. No variables were found that differentially predicted outcome between Internet-based CBT and Internet-based PST. More research is needed with sufficient power to investigate predictors and moderators of response to reveal for whom Internet-based therapy is best suited. © 2013 Copyright Society for Psychotherapy Research
Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism
Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio
Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress
Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro.
In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research
Change and Aging Senescence as an adaptation
Understanding why we age is a long-lived open problem in evolutionary
biology. Aging is prejudicial to the individual and evolutionary forces should
prevent it, but many species show signs of senescence as individuals age. Here,
I will propose a model for aging based on assumptions that are compatible with
evolutionary theory: i) competition is between individuals; ii) there is some
degree of locality, so quite often competition will between parents and their
progeny; iii) optimal conditions are not stationary, mutation helps each
species to keep competitive. When conditions change, a senescent species can
drive immortal competitors to extinction. This counter-intuitive result arises
from the pruning caused by the death of elder individuals. When there is change
and mutation, each generation is slightly better adapted to the new conditions,
but some older individuals survive by random chance. Senescence can eliminate
those from the genetic pool. Even though individual selection forces always win
over group selection ones, it is not exactly the individual that is selected,
but its lineage. While senescence damages the individuals and has an
evolutionary cost, it has a benefit of its own. It allows each lineage to adapt
faster to changing conditions. We age because the world changes.Comment: 19 pages, 4 figure
Time correlations and 1/f behavior in backscattering radar reflectivity measurements from cirrus cloud ice fluctuations
The state of the atmosphere is governed by the classical laws of fluid motion
and exhibits correlations in various spatial and temporal scales. These
correlations are crucial to understand the short and long term trends in
climate. Cirrus clouds are important ingredients of the atmospheric boundary
layer. To improve future parameterization of cirrus clouds in climate models,
it is important to understand the cloud properties and how they change within
the cloud. We study correlations in the fluctuations of radar signals obtained
at isodepths of winter and fall cirrus clouds. In particular we focus on three
quantities: (i) the backscattering cross-section, (ii) the Doppler velocity and
(iii) the Doppler spectral width. They correspond to the physical coefficients
used in Navier Stokes equations to describe flows, i.e. bulk modulus,
viscosity, and thermal conductivity. In all cases we find that power-law time
correlations exist with a crossover between regimes at about 3 to 5 min. We
also find that different type of correlations, including 1/f behavior,
characterize the top and the bottom layers and the bulk of the clouds. The
underlying mechanisms for such correlations are suggested to originate in ice
nucleation and crystal growth processes.Comment: 33 pages, 9 figures; to appear in the Journal of Geophysical Research
- Atmosphere
Learning From Early Attempts to Generalize Darwinian Principles to Social Evolution
Copyright University of Hertfordshire & author.Evolutionary psychology places the human psyche in the context of evolution, and addresses the Darwinian processes involved, particularly at the level of genetic evolution. A logically separate and potentially complementary argument is to consider the application of Darwinian principles not only to genes but also to social entities and processes. This idea of extending Darwinian principles was suggested by Darwin himself. Attempts to do this appeared as early as the 1870s and proliferated until the early twentieth century. But such ideas remained dormant in the social sciences from the 1920s until after the Second World War. Some lessons can be learned from this earlier period, particularly concerning the problem of specifying the social units of selection or replication
Crystal structure of a tripartite complex between C3dg, C-terminal domains of factor H and OspE of Borrelia burgdorferi
Complement is an important part of innate immunity. The alternative pathway of complement is activated when the main opsonin, C3b coats non-protected surfaces leading to opsonisation, phagocytosis and cell lysis. The alternative pathway is tightly controlled to prevent autoactivation towards host cells. The main regulator of the alternative pathway is factor H (FH), a soluble glycoprotein that terminates complement activation in multiple ways. FH recognizes host cell surfaces via domains 19–20 (FH19-20). All microbes including Borrelia burgdorferi, the causative agent of Lyme borreliosis, must evade complement activation to allow the infectious agent to survive in its host. One major mechanism that Borrelia uses is to recruit FH from host. Several outer surface proteins (Osp) have been described to bind FH via the C-terminus, and OspE is one of them. Here we report the structure of the tripartite complex formed by OspE, FH19-20 and C3dg at 3.18 Å, showing that OspE and C3dg can bind simultaneously to FH19-20. This verifies that FH19-20 interacts via the “common microbial binding site” on domain 20 with OspE and simultaneously and independently via domain 19 with C3dg. The spatial organization of the tripartite complex explains how OspE on the bacterial surface binds FH19-20, leaving FH fully available to protect the bacteria against complement. Additionally, formation of tripartite complex between FH, microbial protein and C3dg might enable enhanced protection, particularly on those regions on the bacteria where previous complement activation led to deposition of C3d. This might be especially important for slow-growing bacteria that cause chronic disease like Borrelia burgdorferi.Peer reviewe
- …
