78 research outputs found

    The Superconductor-Insulator Transition in a Tunable Dissipative Environment

    Full text link
    We study the influence of a tunable dissipative environment on the dynamics of Josephson junction arrays near the superconductor-insulator transition. The experimental realization of the environment is a two dimensional electron gas coupled capacitively to the array. This setup allows for the well-controlled tuning of the dissipation by changing the resistance of the two dimensional electron gas. The capacitive coupling cuts off the dissipation at low frequencies. We determine the phase diagram and calculate the temperature and dissipation dependence of the array conductivity. We find good agreement with recent experimental results.Comment: 4 pages, 4 .eps figures, revte

    Flux-noise spectra around the Kosterlitz-Thouless transition for two-dimensional superconductors

    Full text link
    The flux-noise spectra around the Kosterlitz-Thouless transition are obtained from simulations of the two-dimensional resistively shunted junction model. In particular the dependence on the distance dd between the pick-up coil and the sample is investigated. The typical experimental situation corresponds to the large-dd limit and a simple relation valid in this limit between the complex impedance and the noise spectra is clarified. Features, which distinguish between the large- and small-dd limit, are identified and the possibility of observing these features in experiments is discussed.Comment: 12 pages including 8 figures, submitted to Phys. Rev.

    Molecular absorption lines toward star-forming regions : a comparative study of HCO+, HNC, HCN, and CN

    Full text link
    Aims. The comparative study of several molecular species at the origin of the gas phase chemistry in the diffuse interstellar medium (ISM) is a key input in unraveling the coupled chemical and dynamical evolution of the ISM. Methods. The lowest rotational lines of HCO+, HCN, HNC, and CN were observed at the IRAM-30m telescope in absorption against the \lambda 3 mm and \lambda 1.3 mm continuum emission of massive star-forming regions in the Galactic plane. The absorption lines probe the gas over kiloparsecs along these lines of sight. The excitation temperatures of HCO+ are inferred from the comparison of the absorptions in the two lowest transitions. The spectra of all molecular species on the same line of sight are decomposed into Gaussian velocity components. Most appear in all the spectra of a given line of sight. For each component, we derived the central opacity, the velocity dispersion, and computed the molecular column density. We compared our results to the predictions of UV-dominated chemical models of photodissociation regions (PDR models) and to those of non-equilibrium models in which the chemistry is driven by the dissipation of turbulent energy (TDR models). Results. The molecular column densities of all the velocity components span up to two orders of magnitude. Those of CN, HCN, and HNC are linearly correlated with each other with mean ratios N(HCN)/N(HNC) = 4.8 ±\pm 1.3 and N(CN)/N(HNC) = 34 ±\pm 12, and more loosely correlated with those of HCO+, N(HNC)/N(HCO+) = 0.5 ±\pm 0.3, N(HCN)/N(HCO+) = 1.9 ±\pm 0.9, and N(CN)/N(HCO+) = 18 ±\pm 9. These ratios are similar to those inferred from observations of high Galactic latitude lines of sight, suggesting that the gas sampled by absorption lines in the Galactic plane has the same chemical properties as that in the Solar neighbourhood. The FWHM of the Gaussian velocity components span the range 0.3 to 3 km s-1 and those of the HCO+ lines are found to be 30% broader than those of CN-bearing molecules. The PDR models fail to reproduce simultaneously the observed abundances of the CN-bearing species and HCO+, even for high-density material (100 cm-3 < nH < 104 cm-3). The TDR models, in turn, are able to reproduce the observed abundances and abundance ratios of all the analysed molecules for the moderate gas densities (30 cm-3 < nH < 200 cm-3) and the turbulent energy observed in the diffuse interstellar medium. Conclusions. Intermittent turbulent dissipation appears to be a promising driver of the gas phase chemistry of the diffuse and translucent gas throughout the Galaxy. The details of the dissipation mechanisms still need to be investigated

    On the Coexistence of Diagonal and off-Diagonal Long-Range Order, a Monte Carlo Study

    Full text link
    The zero temperature properties of interacting 2 dimensional lattice bosons are investigated. We present Monte Carlo data for soft-core bosons that demonstrate the existence of a phase in which crystalline long-range order and off-diagonal long-range order (superfluidity) coexist. We comment on the difference between hard and soft-core bosons and compare our data to mean-field results that predict a larger coexistence region. Furthermore, we determine the critical exponents for the various phase transitions.Comment: 7 pages and 8 figures appended in postscript, KA-TFP-93-0

    Detailed Interstellar Polarimetric Properties of the Pipe Nebula at Core Scales

    Get PDF
    We use R-band CCD linear polarimetry collected for about 12000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival 2MASS data we estimate that the surveyed areas present total visual extinctions in the range 0.6 < Av < 4.6. While the observed polarizations show a well ordered large scale pattern, with polarization vectors almost perpendicularly aligned to the cloud's long axis, at core scales one see details that are characteristics of each core. Although many observed stars present degree of polarization which are unusual for the common interstellar medium, our analysis suggests that the dust grains constituting the diffuse parts of the Pipe nebula seem to have the same properties as the normal Galactic interstellar medium. Estimates of the second-order structure function of the polarization angles suggest that most of the Pipe nebula is magnetically dominated and that turbulence is sub-Alvenic. The Pipe nebula is certainly an interesting region where to investigate the processes prevailing during the initial phases of low mass stellar formation.Comment: 20 pages, 23 figures, Accepted for The Astrophysical Journa

    Young starless cores embedded in the magnetically dominated Pipe Nebula

    Get PDF
    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be threaded by a uniform magnetic field at scales of few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30-m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace better the densest regions than previous 2MASS extinction maps, while 2MASS extinction maps trace better the diffuse gas. The properties of the cores derived from dust emission show average radii of ~0.09 pc, densities of ~1.3x10^5 cm^-3, and core masses of ~2.5 M_sun. Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage, and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission, with CS detections toward all the sample. Two of them, Cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.Comment: Accepted for publication in ApJ. 15 pages, 5 figures, 9 table

    Evolution of the Density of States Gap in a Disordered Superconductor

    Full text link
    It has only recently been possible to study the superconducting state in the attractive Hubbard Hamiltonian via a direct observation of the formation of a gap in the density of states N(w). Here we determine the effect of random chemical potentials on N(w) and show that at weak coupling, disorder closes the gap concurrently with the destruction of superconductivity. At larger, but still intermediate coupling, a pseudo-gap in N(w) remains even well beyond the point at which off-diagonal long range order vanishes. This change in the elementary excitations of the insulating phase corresponds to a crossover between Fermi- and Bose-Insulators. These calculations represent the first computation of the density of states in a finite dimensional disordered fermion model via the Quantum Monte Carlo and maximum entropy methods.Comment: 4 pages, 4 figure
    corecore