156 research outputs found

    Palynologie, écologie, paléoécologie

    Get PDF

    Investigation of internal erosion processes using a coupled DEM-fluid method

    Get PDF
    The evolution of granular beds subjected to upward seepage flow is investigated using a coupled DEM-fluid model implemented by Catalano et al. in the open-source software Yade-DEM. Firstly, filtration properties of a coarse narrowly graded material are analyzed by simulating the transport of smaller particles from a base layer through the coarse filter by gravitational loading or downward flow with uniform pressure gradient. The results are analysed on the basis of the constriction size distribution (CSD) of the filter which describes statistically the sizes of throats between pores in the material. Secondly, we examine the results obtained when, instead of two different layers, the coarse and fine materials are initially mixed in one unique layer and subjected to gravity. Thirdly, this mixture of coarse and fine particles is subjected to both gravity and a non-uniform pressure gradient, by injecting the fluid in one point below the layer, as inspired by previous experiments. Similar channeling patterns are obtained in both experiments and simulations when the boundary condition at the injection point is an imposed flux. This boundary condition results in a recirculation mechanism that remains confined in a finite zone around the injection point as long as the flux is below a threshold value. By simulating an imposed pressure condition, we finally show that instabilities can be triggered by the transport of small particles away from the injection point. This segregation process results in a lower porosity and an increased pressure gradient above the eroded zone, so that the instability-triggering pressure gradient in bi-dispersed mixtures is lower than in mono-dispersed mixtures

    The Whereabouts of 2D Gels in Quantitative Proteomics

    Get PDF
    Two-dimensional gel electrophoresis has been instrumental in the development of proteomics. Although it is no longer the exclusive scheme used for proteomics, its unique features make it a still highly valuable tool, especially when multiple quantitative comparisons of samples must be made, and even for large samples series. However, quantitative proteomics using 2D gels is critically dependent on the performances of the protein detection methods used after the electrophoretic separations. This chapter therefore examines critically the various detection methods (radioactivity, dyes, fluorescence, and silver) as well as the data analysis issues that must be taken into account when quantitative comparative analysis of 2D gels is performed

    Modern pollen rain–vegetation relationships along a forest–steppe transect in the Golestan National Park, NE Iran

    Get PDF
    Pollen rain-vegetation relationships were studied over a forest-steppe transect in Golestan National Park, NE Iran. The surface pollen percentages were compared to the vegetation composition of the respective vegetation types in 18 sampling points using both descriptive and numerical approaches. Hyrcanian lowland forests are characterized by pollen assemblages dominated by Quercus, Carpinus betulus and low frequencies of Zelkova carpinifolia. Both Parrotia persica and Zelkova carpinifolia show a very low pollen representation in modern surface samples, an under-representation that should be taken into account in the interpretation of past vegetation records. Transitional communities between the forest and steppe including Acer monspessulanum subsp. turcomanicum, Crataegus and Paliurus scrubs, Juniperus excelsa woodlands and shrub-steppe patches are more difficult to distinguish in pollen assemblages, however, they are characterized by higher values of the dominant shrub species. The transitional vegetation communities at the immediate vicinity of the forest show also a substantial amount of grass pollen. Many insect-pollinated taxa are strongly under-represented in the pollen rain including most of the rosaceous trees and shrubs, Rhamnus, Paliurus, Acer and Berberis. Artemisia steppes are characterized by very high values of Artemisia pollen and the near absence of tree pollen

    Asymmetric response of forest and grassy biomes to climate variability across the African Humid Period : influenced by anthropogenic disturbance?

    Get PDF
    A comprehensive understanding of the relationship between land cover, climate change and disturbance dynamics is needed to inform scenarios of vegetation change on the African continent. Although significant advances have been made, large uncertainties exist in projections of future biodiversity and ecosystem change for the world's largest tropical landmass. To better illustrate the effects of climate–disturbance–ecosystem interactions on continental‐scale vegetation change, we apply a novel statistical multivariate envelope approach to subfossil pollen data and climate model outputs (TraCE‐21ka). We target paleoenvironmental records across continental Africa, from the African Humid Period (AHP: ca 14 700–5500 yr BP) – an interval of spatially and temporally variable hydroclimatic conditions – until recent times, to improve our understanding of overarching vegetation trends and to compare changes between forest and grassy biomes (savanna and grassland). Our results suggest that although climate variability was the dominant driver of change, forest and grassy biomes responded asymmetrically: 1) the climatic envelope of grassy biomes expanded, or persisted in increasingly diverse climatic conditions, during the second half of the AHP whilst that of forest did not; 2) forest retreat occurred much more slowly during the mid to late Holocene compared to the early AHP forest expansion; and 3) as forest and grassy biomes diverged during the second half of the AHP, their ecological relationship (envelope overlap) fundamentally changed. Based on these asymmetries and associated changes in human land use, we propose and discuss three hypotheses about the influence of anthropogenic disturbance on continental‐scale vegetation change
    • 

    corecore