1,139 research outputs found
Kinetic theory of cluster impingement in the framework of statistical mechanics of rigid disks
The paper centres on the evaluation of the function n(theta)=N(theta)/N0,
that is the normalized number of islands as a function of coverage 0<theta<1,
given N0 initial nucleation centres (dots) having any degree of spatial
correlation. A mean field approach has been employed: the islands have the same
size at any coverage. In particular, as far as the random distribution of dots
is concerned, the problem has been solved by considering the contribution of
binary collisions between islands only. With regard to correlated dots, we
generalize a method previously applied to the random case only. In passing, we
have made use of the exclusion probability reported in [S. Torquato, B. Lu, J.
Rubinstein, Phys.Rev.A 41, 2059 (1990)], for determining the kinetics of
surface coverage in the case of correlated dots, improving our previous
calculation [M. Tomellini, M. Fanfoni, M. Volpe Phys. Rev.B 62, 11300, (2000)].Comment: 10 pages, 3 figure
Can we continue research in splenectomized dogs? Mycoplasma haemocanis: Old problem - New insight
We report the appearance of a Mycoplasma haemocanis infection in laboratory dogs, which has been reported previously, yet, never before in Europe. Outbreak of the disease was triggered by a splenectomy intended to prepare the dogs for a hemorrhagic shock study. The clinical course of the dogs was dramatic including anorexia and hemolytic anemia. Treatment included allogeneic transfusion, prednisone, and oxytetracycline. Systematic follow-up (n=12, blood smears, antibody testing and specific polymerase chain reaction) gives clear evidence that persistent eradication of M. haemocanis is unlikely. We, therefore, had to abandon the intended shock study. In the absence of effective surveillance and screening for M. haemocanis, the question arises whether it is prudent to continue shock research in splenectomized dogs. Copyright (C) 2004 S. Karger AG, Basel
HCI policy and the smart city
While the idea of the ‘Smart City’ has attracted increasing attention from academia, industry, and government this interest has largely had a technical and technological focus. This paper identifies some of the important political and policy challenges facing the idea, the discourse, of a ‘smart city’ as a means to optimise HCI input into the ‘smart city’ debate. It then addresses that gap by detailing a research project that explored how experts in smart city research and development in the UK context responded to this policy challenge. Experts were asked questions regarding their prior experience with the “smart city”, their understandings of what it means for a city to be smart, and what policy potentials they've recognised in the smart city. The paper analyses and offers a synthesis of the responses collected throughout the research with the current policies concerning various smart city proximity, thereby providing a critical assessment of the values underlying the smart city. The paper aims to explore and present some of the policy possibilities for UK smart cities that are potentially useful for politicians, policy makers, planners, academics, and technology companies. I believe that these perspectives for policy development can be used to inform responsible development, spatially and socially inclusive technologies, and ultimately more resilient and liveable cities
Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes
Constant-pressure molecular-dynamics simulations of phospholipid membranes in
the fluid phase reveal strong correlations between equilibrium fluctuations of
volume and energy on the nanosecond time-scale. The existence of strong
volume-energy correlations was previously deduced indirectly by Heimburg from
experiments focusing on the phase transition between the fluid and the ordered
gel phases. The correlations, which are reported here for three different
membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation
coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two
temperatures showing that the correlation coefficient increases as the phase
transition is approached
Hydrothermal sensitivities of seed populations underlie fluctuations of dormancy states in an annual plant community
Plant germination ecology involves continuous interactions between changing environmental conditions and the sensitivity of seed populations to respond to those conditions at a given time. Ecologically meaningful parameters characterizing germination capacity (or dormancy) are needed to advance our understanding of the evolution of germination strategies within plant communities. The germination traits commonly examined (e.g., maximum germination percentage under optimal conditions) may not adequately reflect the critical ecological differences in germination behavior across species, communities, and seasons. In particular, most seeds exhibit primary dormancy at dispersal that is alleviated by exposure to dry after-ripening or to hydrated chilling to enable germination in a subsequent favorable season. Population-based threshold (PBT) models of seed germination enable quantification of patterns of germination timing using parameters based on mechanistic assumptions about the underlying germination physiology. We applied the hydrothermal time (HTT) model, a type of PBT model that integrates environmental temperature and water availability, to study germination physiology in a guild of coexisting desert annual species whose seeds were after-ripened by dry storage under different conditions. We show that HTT assumptions are valid for describing germination physiology in these species, including loss of dormancy during after-ripening. Key HTT parameters, the hydrothermal time constant (θHT ) and base water potential distribution among seeds (Ψb (g)), were effective in describing changes in dormancy states and in clustering species exhibiting similar germination syndromes. θHT is an inherent species-specific trait relating to timing of germination that correlates well with long-term field germination fraction, while Ψb (g) shifts with depth of dormancy in response to after-ripening and seasonal environmental variation. Predictions based on variation among coexisting species in θHT and Ψb (g) in laboratory germination tests matched well with 25-yr observations of germination dates and fractions for the same species in natural field conditions. Seed dormancy and germination strategies, which are significant contributors to long-term species demographics under natural conditions, can be represented by readily measurable functional traits underlying variation in germination phenologies.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Rivale: A Prototype realistic Immersive Virtual Agent-Based Learning Environment Case Study for Learning Requirements Elicitation Skills
Current ways of teaching requirements analysis, such as paper-based case studies, do not sufficiently support development of skills to investigate a problem situation. This paper reports on research to develop and evaluate an initial prototype of a Realistic Immersive Virtual Agent-based Learning Environment (RIVALE) virtual case study. The example fictional case study in this paper would be used as an exercise for students taking a systems analysis and design class to practice and learn requirements elicitation skills, such as interviewing, questionnaires, document review, form review, and observation. The intention is to provide a more realistic experience and to thereby support better learning as well as more realistic assessment of and feedback concerning student skills in requirements elicitation. The requirements, design, implementation, and initial, lightweight evaluation of the initial prototype are described. The initial prototype shows promise, but specific issues, especially problems with achieving realistic conversation, are identified and recommendations for further research are provided.
Competitive Benchmarking: An IS Research Approach to Address Wicked Problems with Big Data and Analytics
Wicked problems like sustainable energy and financial market stability are societal challenges that arise from complex socio-technical systems in which numerous social, economic, political, and technical factors interact. Understanding and mitigating them requires research methods that scale beyond the traditional areas of inquiry of Information Systems (IS) “individuals, organizations, and markets” and that deliver solutions in addition to insights. We describe an approach to address these challenges through Competitive Benchmarking (CB), a novel research method that helps interdisciplinary research communities to tackle complex challenges of societal scale by using different types of data from a variety of sources such as usage data from customers, production patterns from producers, public policy and regulatory constraints, etc. for a given instantiation. Further, the CB platform generates data that can be used to improve operational strategies and judge the effectiveness of regulatory regimes and policies. We describe our experience applying CB to the sustainable energy challenge in the Power Trading Agent Competition (Power TAC) in which more than a dozen research groups from around the world jointly devise, benchmark, and improve IS-based solutions
Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity
Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury.
Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted--ischemia--and then restored--reperfusion--leading to a burst of reactive oxygen species (ROS) from mitochondria. It has been tacitly assumed that ROS production during IR is a non-specific consequence of oxygen interacting with dysfunctional mitochondria upon reperfusion. Recently, this view has changed, suggesting that ROS production during IR occurs by a defined mechanism. Here we survey the metabolic factors underlying IR injury and propose a unifying mechanism for its causes that makes sense of the huge amount of disparate data in this area and provides testable hypotheses and new directions for therapies.Work in our laboratories is supported by the Medical Research Council (UK) and the British Heart Foundation. E.T.C. is supported by a Human Frontiers Science Program fellowship.This is the author accepted manuscript. The final version is available from Cell Press via http://dx.doi.org/10.1016/j.cmet.2015.12.00
- …
