16,122 research outputs found
Large eddy simulation and laboratory experiments on the decay of grid wakes in strongly stratified flows
A detailed analysis of the flow structure resulting from the combination
of turbulence and internal waves is carried out and visualized by means
of the Schlieren method on waves in a strongly stratified fluid at the Laboratory of the IPM in Moscow. The joint appearance of the more regular internal wave oscillations and the small-scale turbulence that is confined vertically to the Ozmidov length scale favours the use of a simple geometrical analysis to investigate their time-space span and evolution. This provides useful information on the collapse of internal wave breaking processes in the ocean and the atmosphere. The measurements were performed under a variety of linear stratifications and different grid forcing scales, combining the grid wake and velocity shear. A numerical simulation using LES on the passage of a single bar in a linearly stratified fluid medium has been compared with the experiments identifying the different influences of the environmental
agents on the actual effective vertical diffusion of the wakes. The equation of state, which connects the density and salinity, is assumed to be linear, with the coefficient of the salt contraction being included into the definition of salinity or heat. The characteristic internal waves as well as the entire beam width are related to the diameter of the bar, the Richardson number and the peak-to-peak value of oscillations. The ultimate frequency of the infinitesimal periodic internal waves is limited by the maximum buoyancy frequency relating the decrease in the vertical scale with the anisotropy of the velocity turbulent r.m.s. velocity.Peer ReviewedPreprin
Magmatic processes at the volcanic front of Central Mexican volcanic belt: Sierra de Chichinautzin volcanic field (Mexico)
The Sierra de Chichinautzin (SCN) volcanic field is considered one of the key areas to understand the complex petrogenetic processes at the volcanic front of the Mexican Volcanic Belt (MVB). New as well as published major- and trace-element and Sr and Nd isotopic data are used to constrain the magma generation and evolution processes in the SCN. From inverse and direct modelling, combined 87Sr/86Sr and 143Nd/144Nd data, and use of multi-dimensional log-ratio discriminant function based diagrams and other geological and geophysical considerations, we infer that mafic magmas from the SCN were generated by partial melting of continental lithospheric mantle in an extensional setting. Inverse modelling of primary magmas from the SCN further indicates that the source region is not depleted in high-field strength elements (HFSE) compared to large ion lithophile elements (LILE) and rare-earth elements (REE). The petrogenesis of evolved magmas from the SCN is consistent with the partial melting of the continental crust facilitated by influx of mantle-derived magmas. Generally, an extensional setting is indicated for the SCN despite continuing subduction at the Middle America Trench
Density-functional study of defects in two-dimensional circular nematic nanocavities
We use density--functional theory to study the structure of two-dimensional
defects inside a circular nematic nanocavity. The density, nematic order
parameter, and director fields, as well as the defect core energy and core
radius, are obtained in a thermodynamically consistent way for defects with
topological charge (with radial and tangential symmetries) and .
An independent calculation of the fluid elastic constants, within the same
theory, allows us to connect with the local free--energy density predicted by
elastic theory, which in turn provides a criterion to define a defect core
boundary and a defect core free energy for the two types of defects. The radial
and tangential defects turn out to have very different properties, a feature
that a previous Maier--Saupe theory could not account for due to the simplified
nature of the interactions --which caused all elastic constants to be equal. In
the case with two defects in the cavity, the elastic r\'egime cannot
be reached due to the small radii of the cavities considered, but some trends
can already be obtained.Comment: 9 figures. Accepted for publication in liquid crystal
Los asentamientos rurales en Cantabria. Propuesta de clasificación según el tipo de planta.
Sin resume
Efficiency at maximum power: An analytically solvable model for stochastic heat engines
We study a class of cyclic Brownian heat engines in the framework of
finite-time thermodynamics. For infinitely long cycle times, the engine works
at the Carnot efficiency limit producing, however, zero power. For the
efficiency at maximum power, we find a universal expression, different from the
endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a
simple one-dimensional engine working in and with a time-dependent harmonic
potential.Comment: 6 pages, 3 figure
Relational Galois connections between transitive fuzzy digraphs
Fuzzy-directed graphs are often chosen as the data structure to model and implement solutions to several problems in the applied sciences. Galois connections have also shown to be useful both in theoretical and in practical problems. In this paper, the notion of relational Galois connection is extended to be applied between transitive fuzzy directed graphs. In this framework, the components of the connection are crisp relations satisfying certain reasonable properties given in terms of the so-called full powering
Polynomial Cointegration among Stationary Processes with Long Memory
n this paper we consider polynomial cointegrating relationships among
stationary processes with long range dependence. We express the regression
functions in terms of Hermite polynomials and we consider a form of spectral
regression around frequency zero. For these estimates, we establish consistency
by means of a more general result on continuously averaged estimates of the
spectral density matrix at frequency zeroComment: 25 pages, 7 figures. Submitted in August 200
- …
