44 research outputs found

    Adoptive cell therapy of triple negative breast cancer with redirected cytokine-induced killer cells

    Get PDF
    Cytokine-Induced Killer (CIK) cells share several functional and phenotypical properties of both T and natural killer (NK) cells. They represent an attractive approach for cell-based immunotherapy, as they do not require antigen-specific priming for tumor cell recognition, and can be rapidly expanded in vitro. Their relevant expression of Fc\u3b3RIIIa (CD16a) can be exploited in combination with clinical-grade monoclonal antibodies (mAbs) to redirect their lytic activity in an antigen-specific manner. Here, we report the efficacy of this combined approach against triple negative breast cancer (TNBC), an aggressive tumor that still requires therapeutic options. Different primitive and metastatic TNBC cancer mouse models were established in NSG mice, either by implanting patient-derived TNBC samples or injecting MDA-MB-231 cells orthotopically or intravenously. The combined treatment consisted in the repeated intratumoral or intravenous injection of CIK cells and cetuximab. Tumor growth and metastasis were monitored by bioluminescence or immunohistochemistry, and survival was recorded. CIK cells plus cetuximab significantly restrained primitive tumor growth in mice, either in patient-derived tumor xenografts or MDA-MB-231 cell line models. Moreover, this approach almost completely abolished metastasis spreading and dramatically improved survival. The antigen-specific mAb favored tumor and metastasis tissue infiltration by CIK cells, and led to an enrichment of the CD16a+ subset. Data highlight the potentiality of this novel immunotherapy strategy where a nonspecific cytotoxic cell population can be converted into tumor-specific effectors with clinical-grade antibodies, thus providing not only a therapeutic option for TNBC but also a valid alternative to more complex approaches based on chimeric antigen receptor-engineered cells. List of abbreviations: ACT, Adoptive Cell Transfer; ADCC, Antibody-Dependent Cell-mediated Cytotoxicity; ADP, Adenosine diphosphate; BLI, Bioluminescence Imaging; CAR, Chimeric Antigen Receptor; CIK, Cytokine Induced Killer cells; CTX, Cetuximab; DMEM, Dulbecco\u2019s Modified Eagle Medium; EGFR, Human Epidermal Growth Factor 1; ER, Estrogen; FBS, Fetal Bovine Serum; FFPE, Formalin-Fixed Paraffin-Embedded; GMP, Good Manufacturing Practices; GVHD, Graft Versus Host Disease; HER2, Human Epidermal Growth Factor 2; HRP, Horseradish Peroxidase; IFN-\u3b3, Interferon-\u3b3; IHC, Immunohistochemistry; IL-2, Interleukin-2; ISO, Irrelevant antibody; i.t., intratumoral; i.v., intravenous, mAbs, Monoclonal Antibodies; mIHC, Multiplex Fluorescence Immunohistochemistry; MHC, Major Histocompatibility Complex; NK, Natural Killer; NKG2D, Natural-Killer group 2 member D; NSG, NOD/SCID common \u3b3 chain knockout; PARP, Poly ADP-ribose polymerase; PBMCs, Peripheral Blood Mononuclear Cells; PBS, Phosphate-buffered saline; PDX, Patient-derived xenograft; PR, Progesterone; rhIFN-\u3b3, Recombinant Human Interferon-\u3b3; RPMI, Roswell Park Memorial Institute; STR, Short tandem Repeat; TCR, T Cell Receptor; TNBC, Triple Negative Breast Cancer; TSA, Tyramide Signal Amplification

    A BARF1-specific mAb as a new immunotherapeutic tool for the management of EBV-related tumors.

    Get PDF
    The use of monoclonal antibodies (mAb) for the diagnosis and treatment of malignancies is acquiring an increasing clinical importance, thanks to their specificity, efficacy and relative easiness of use. However, in the context of Epstein-Barr virus (EBV)-related malignancies, only cancers of B-cell origin can benefit from therapeutic mAb targeting specific B-cell lineage antigens. To overcome this limitation, we generated a new mAb specific for BARF1, an EBV-encoded protein with transforming and immune-modulating properties. BARF1 is expressed as a latent protein in nasopharyngeal (NPC) and gastric carcinoma (GC), and also in neoplastic B cells mainly upon lytic cycle induction, thus representing a potential target for all EBV-related malignancies. Considering that BARF1 is largely but not exclusively secreted, the BARF1 mAb was selected on the basis of its ability to bind a domain of the protein retained at the cell surface of tumor cells. In vitro, the newly generated mAb recognized the target molecule in its native conformation, and was highly effective in mediating both ADCC and CDC against BARF1-positive tumor cells. In vivo, biodistribution analysis in mice engrafted with BARF1-positive and -negative tumor cells confirmed its high specificity for the target. More importantly, the mAb disclosed a relevant antitumor potential in preclinical models of NPC and lymphoma, as evaluated in terms of both reduction of tumor masses and long-term survival. Taken together, these data not only confirm BARF1 as a promising target for immunotherapeutic interventions, but also pave the way for a successful translation of this new mAb to the clinical use

    P06.06 Adoptive cell therapy of triple negative breast cancer with redirected cytokine-induced killer cells

    Get PDF
    Background Cytokine-Induced Killer (CIK) cells share several functional and phenotypical properties of both T and natural killer (NK) cells, and represent an attractive approach for cell-based immunotherapy as they do not require antigen-specific priming for tumor cell recognition, and can be efficiently and rapidly expanded in vitro. We recently reported that CIK cells have a relevant expression of FcγRIIIa (CD16a), which can be exploited in combination with clinical-grade monoclonal antibodies (mAbs) to redirect their lytic activity in an antigen-specific manner. Here, we report the assessment and the efficacy of this combined approach against triple negative breast cancer (TNBC), an aggressive tumor that still requires reliable therapeutic options. Materials and methods Different primitive and metastatic TNBC cancer mouse models were established in NSG mice, either by implanting patient-derived TNBC samples or MDA-MB-231 cells subcutaneously or orthotopically into the mammary fat pad, or by injecting MDA-MB-231 cells intravenously. The combined treatment consisted in the repeated intratumoral or intravenous injection of CIK cells and cetuximab, while the mAb alone or CIK cells plus Rituximab served as control treatments. Tumor growth and metastasis were monitored by bioluminescence or immunohistochemistry, and survival was recorded. Results CIK cells plus cetuximab significantly restrained primitive tumor growth in mice, either implanted with TNBC patient-derived tumor xenografts or injected with MDA-MB-231 TNBC cell line. Moreover, in both experimental and spontaneous metastatic models the combined approach almost completely abolished metastasis spreading and dramatically improved survival. The antigen-specific mAb favored tumor and metastasis tissue infiltration by CIK cells, and in particular led to an enrichment of the CD16a+ subset. Conclusions Data highlight the potentiality of a novel immunotherapy approach where a non-specific cytotoxic cell population can be converted into tumor-specific effectors with clinical-grade antibodies, thus providing not only a therapeutic option for TNBC but also a valid alternative to more complex approaches based on chimeric antigen receptor-engineered cells. Disclosure Information R. Sommaggio: None. E. Cappuzzello: None. A. Dalla Pieta: None. P. Palmerini: None. A. Tosi: None. D. Carpanese: None. L. Nicole: None. A. Rosato: None

    P09.01 Adoptive cell therapy of hematological malignancies using cytokine-induced killer cells retargeted with monoclonal antibodies

    Get PDF
    Background Cytokine-Induced Killer (CIK) cells are a population of effector cells that represents a promising tool for adoptive cell therapy. They are easily expandable ex-vivo, safe, and exert cytotoxicity against a broad range of tumor histotypes.1 We recently reported that they have a relevant expression of FcγRIIIa (CD16a), which can be exploited in combination with clinical-grade monoclonal antibodies (mAbs) to redirect their cytotoxicity in an antigen-specific manner, to improve their antitumor activity.2 Indeed, the engagement of CD16a on CIK cells leads to a potent antibody-dependent cell-mediated cytotoxicity (ADCC) against ovarian cancer both in vitro and in vivo. Based on this observation, we investigated whether CIK cells can be specifically retargeted against B-cell malignancies by combination with anti-CD20 mAbs, namely Rituximab® (RTX) and Obinutuzumab® (OBI). Materials and Methods CIK cells were obtained from peripheral blood mononuclear cells of healthy donors, and stimulated in vitro with IFN-γ, CD3 mAb and IL-2 for 14 days; fresh IL-2 was provided every 3–4 days. CIK cell phenotype was analyzed by multicolor flow cytometry; cytotoxic activity was assessed by calcein AM-release assay against B-cell lines, primary samples and patient-derived xenografts (PDX) obtained from B-cell lymphoma patients after written informed consent. Results The combination with both RTX and OBI significantly increased specific CIK cells lysis against several CD20-expressing lymphoma B cell lines, primary tumors from B-cell lymphoma patients and an established PDX, compared to the combination with a control mAb (cetuximab, CTX). NK-depletion demonstrated that the mAb-mediated cytotoxicity is accountable to the CIK cells fraction within the bulk population since no difference in the lytic activity was detectd in the absence of NK cells. In addition, these results are further supported by in vivo preliminary experiments where the treatment with CIK cells in combination with OBI extensively reduced the growth of PDX and increased mice survival, compared to CIK cells or OBI administered alone. Conclusions Here we proved that CIK cells can be retargeted with clinical-grade mAbs against CD20-expressing lymphomas. These data indicate that the combination of CIK cells with mAbs can represent a novel approach for the treatment of haematological malignancies. References Franceschetti M, Pievani A, Borleri G, Vago L, Fleischhauer K, Golay J, et al. Cytokine-induced killer cells are terminally differentiated activated CD8 cytotoxic T-EMRA lymphocytes. Exp Hematol 2009;37:616–28. Cappuzzello E, Tosi A, Zanovello P, Sommaggio R, Rosato A. Retargeting cytokine-induced killer cell activity by CD16 engagement with clinical-grade antibodies. Oncoimmunology 2016 Aug;5(8):e1199311. The research leading to these results has received funding from Fondazione AIRC under IG 2018 - ID. 21354 project - P.I. Rosato Antonio Disclosure Information A. Dalla Pieta: None. E. Cappuzzello: None. P. Palmerini: None. R. Sommaggio: None. G. Astori: None. K. Chieregato: None. O. Perbellini: None. M. Tisi: None. C. Visco: None. M. Ruggeri: None. A. Rosato: None

    An increase in food production in Europe could dramatically affect farmland biodiversity

    Get PDF
    Conversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development

    P09.13 Optimization of a GMP-grade large-scale expansion protocol for cytokine-induced killer cells using gas-permeable static culture flasks

    Get PDF
    Background Cytokine-Induced Killer (CIK) cells are ex vivo expanded T cells with NK cell phenotype. They express both CD3 and CD56 antigens, and exert a potent antitumor activity against a variety of tumors. Several clinical trials demonstrated the safety and the feasibility of CIK cell therapy, with very low side effects and minimal graft-versus-host toxicity. In this study, we developed a GMP-compliant protocol for robust large-scale expansion of CIK cells using G-Rex® gas-permeable static culture flasks. Materials and Methods CIK cells were obtained by stimulating healthy donor PBMCs with GMP-grade IFN-γ, IL-2 and CD3 mAbs, and were cultured in G-Rex6® or G-Rex®6M well plates. CIK cells in G-Rex6® were split only once at day 7 to reduce cell density, whereas the number of CIK cells culterd in G-Rex®6M was not adjusted. In both culture conditions, fresh IL-2 was provided every 3–4 days. We compared these two culture protocols with the culture in standard flasks. Phenotype was analyzed by flow cytometry and cytotoxicity was assessed against several tumor cell lines by calcein-release assay. Results CIK cells cultured in G-Rex6® well plates showed an outstanding cell expansion compared to G-Rex®6M well plates or standard culture flasks, with a 400-fold expansion and a mean of 109 total cells obtained per single well in 14 days, starting from just 2.5 × 106 cells per well. Moreover, the cultures in G-Rex6® were characterized by an higher percentage of CD3+CD56+ cells, as compared to G-Rex®6M or standard culture flasks. Cells cultured in all devices had a comparable expression of NKG2D, NKp30, NKp44, 2B4 receptors. Importantly, CIK cells expanded in G-Rex®6 were as cytotoxic as cells expanded in standard culture flasks. Conversely, CIK cells cultured in G-Rex®6M showed a remarkable reduction of cytotoxicity against tumor cell targets, thus suggesting that cell density during expansion could affect CIK cell activity. Conclusions We propose a GMP-compliant protocol for robust large-scale production of CIK cells. G-Rex® system allows to obtain large amounts of CIK cells highly enriched in the CD3+CD56+ subset and endowed with high cytotoxic activity; this can be accomplished with just a single cell culture split at day 7, which dramatically reduces the culture manipulation as compared to the standard culture flasks. Notably, this strategy can be further and easily scalable to produce CIK cells for clinical immunotherapy applications. Disclosure Information A. Ventura: None. P. Palmerini: None. A. Dalla Pieta: None. R. Sommaggio: None. G. Astori: None. K. Chieregato: None. M. Tisi: None. C. Visco: None. O. Perbellini: None. M. Ruggeri: None. E. Cappuzzello: None. A. Rosato: None

    An increase in food production in Europe could dramatically affect farmland biodiversity

    Get PDF
    Conversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development

    National records of 3000 European bee and hoverfly species: A contribution to pollinator conservation

    Get PDF
    Pollinators play a crucial role in ecosystems globally, ensuring the seed production of most flowering plants. They are threatened by global changes and knowledge of their distribution at the national and continental levels is needed to implement efficient conservation actions, but this knowledge is still fragmented and/or difficult to access. As a step forward, we provide an updated list of around 3000 European bee and hoverfly species, reflecting their current distributional status at the national level (in the form of present, absent, regionally extinct, possibly extinct or non-native). This work was attainable by incorporating both published and unpublished data, as well as knowledge from a large set of taxonomists and ecologists in both groups. After providing the first National species lists for bees and hoverflies for many countries, we examine the current distributional patterns of these species and designate the countries with highest levels of species richness. We also show that many species are recorded in a single European country, highlighting the importance of articulating European and national conservation strategies. Finally, we discuss how the data provided here can be combined with future trait and Red List data to implement research that will further advance pollinator conservation
    corecore