136 research outputs found

    Ternary H_2SO_4-H_2O-NH_3 Neutral and Charged Nucleation Rates for a Wide Range of Atmospheric Conditions

    Get PDF
    The formation of new particles for the ternary system involving sulfuric acid, water vapor and ammonia has been studied in detail. The nucleation rates were obtained from experiments at the CERN CLOUD chamber which allows the measurement of new particle formation under very well defined conditions. Some of its key features are the suppression of contaminants at the technological limit and a very precise control of a wide range of temperatures, trace gas concentrations and nucleation rates. The effect of ionizing radiation on the ternary nucleation rates was investigated by using the CERN proton synchrotron beam (beam conditions), natural galactic cosmic rays (gcr conditions) as well as the high voltage clearing field inside the chamber to suppress the effect of charges (neutral conditions). The dependence of the nucleation rate on ion concentration, sulfuric acid and ammonia concentration as well as temperature was studied extensively. This way, an unprecedented set of data was collected giving insight into the role of neutral and charged ternary NH_3 nucleation and the relative importance of the different parameters

    Approaching the diagnosis of growth-restricted neonates: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The consequences of <it>in utero </it>growth restriction have been attracting scholarly attention for the past two decades. Nevertheless, the diagnosis of growth-restricted neonates is as yet an unresolved issue. Aim of this study is the evaluation of the performance of simple, common indicators of nutritional status, which are used in the identification of growth-restricted neonates.</p> <p>Methods</p> <p>In a cohort of 418 consecutively born term and near term neonates, four widely used anthropometric indices of body proportionality and subcutaneous fat accretion were applied, singly and in combination, as diagnostic markers for the detection of growth-restricted babies. The concordance of the indices was assessed in terms of positive and negative percent agreement and of Cohen's kappa.</p> <p>Results</p> <p>The agreement between the anthropometric indices was overall poor with a highest positive percent agreement of 62.5% and a lowest of 27.9% and the κ ranging between 0.19 and 0.58. Moreover, 6% to 32% of babies having abnormal values in just one index were apparently well-grown and the median birth weight centile of babies having abnormal values of either of two indices was found to be as high as the 46<sup>th </sup>centile for gestational age (95%CI 35.5 to 60.4 and 29.8 to 63.9, respectively). On the contrary, the combination of anthropometric indices appeared to have better distinguishing properties among apparently and not apparently well-grown babies. The median birth weight centile of babies having abnormal values in two (or more) indices was the 11<sup>th </sup>centile for gestational age (95%CI 6.3 to 16.3).</p> <p>Conclusions</p> <p>Clinical assessment and anthropometric indices in combination can define a reference standard with better performance compared to the same indices used in isolation. This approach offers an easy-to-use tool for bedside diagnosis of <it>in utero </it>growth restriction.</p

    Evaporation of sulfate aerosols at low relative humidity

    Get PDF
    Evaporation of sulfuric acid from particles can be important in the atmospheres of Earth and Venus. However, the equilibrium constant for the dissociation of H2SO4 to bisulfate ions, which is the one of the fundamental parameters controlling the evaporation of sulfur particles, is not well constrained. In this study we explore the volatility of sulfate particles at very low relative humidity. We measured the evaporation of sulfur particles versus temperature and relative humidity in the CLOUD chamber at CERN. We modelled the observed sulfur particle shrinkage with the ADCHAM model. Based on our model results, we conclude that the sulfur particle shrinkage is mainly governed by H2SO4 and potentially to some extent by SO3 evaporation. We found that the equilibrium constants for the dissociation of H2SO4 to HSO4-(KH2SO4) and the dehydration of H2SO4 to SO3 ((x) K-SO3) are K H2SO4 = 2-4 x 10(9) mol kg(-1) and (x) K SO3 >= 1.4 x 10(10) at 288.8 +/- 5 K.Peer reviewe

    Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    Get PDF
    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (Peer reviewe

    A multidisciplinary program of preparation for childbirth and motherhood: maternal anxiety and perinatal outcomes

    Get PDF
    Background: To study maternal anxiety and perinatal outcomes in pregnant women submitted to a Multidisciplinary Program for Childbirth and Motherhood Preparation (MPCM).Methods: This is a not randomized controlled trial on 67 nulliparous pregnant women divided into two groups according to participation (MPCM Group; n = 38) or not (Control Group; n = 29) in MPCM. the program consisted of 10 meetings (between the 18th and the 38th gestational week) during which educational, physiotherapeutic and interaction activities were developed. Anxiety was quantified at the beginning and at the end of the gestational period by the Trace-State Anxiety Inventory (STAI).Results: Initial maternal anxiety was equivalent between the groups. At the end of the gestational period, it was observed that anxiety levels increased in the Control Group and were maintained in the MPCM Group. A higher occurrence of vaginal deliveries (83.8%) and hospital discharge of three-day-older newborns (81.6%) as a result of MPCM was also significant. Levels of state-anxiety at the end of pregnancy showed a negative correlation with vaginal delivery, gestational age, birth weight and Apgar index at the first minute and positive correlation with the hospital period remaining of the newborns.Conclusion: in the study conditions, MPCM was associated with lower levels of maternal anxiety, a larger number of vaginal deliveries and shorter hospitalization time of newborns. It was not related to adverse perinatal outcomes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Paulista, Botucatu Sch Med, Dept Neurol Psychol & Psychiat, Botucatu, SP, BrazilUniv Estadual Paulista, Botucatu Sch Med, Dept Gynecol & Obstet, Botucatu, SP, BrazilUniv Sagrado Coracao, Dept Hlth Sci, Physiotherapy Sch, Bauru, BrazilSão Paulo Fed Univ Unifesp, Dept Hlth Sci, Phys Therapy Program, Santos, BrazilSão Paulo Fed Univ Unifesp, Dept Hlth Sci, Phys Therapy Program, Santos, BrazilWeb of Scienc

    Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    Get PDF
    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298K, sulfuric acid concentrations between 5x10(5) and 1x10(9)cm(-3), and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of -1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75ion pairs cm(-3)s(-1) to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.Peer reviewe

    Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles

    Get PDF
    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations

    Global atmospheric particle formation from CERN CLOUD measurements

    Get PDF
    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. Here we build a global model of aerosol formation using extensive laboratory-measured nucleation rates involving sulfuric acid, ammonia, ions and organic compounds. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds in addition to sulfuric acid. A significant fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied variations in cosmic ray intensity do not significantly affect climate via nucleation in the present-day atmosphere
    corecore