12 research outputs found

    Follicle Stimulating Hormone is an accurate predictor of azoospermia in childhood cancer survivors

    Get PDF
    Funding: RTM is supported by a Wellcome Trust Intermediate Clinical Fellowship (grant no: 098522), https://wellcome.ac.uk/what-we-do/directories/intermediate-clinical-fellowships-people-funded. TWK is supported by Engineering and Physical Sciences Research Council grant EP/P015638/1, http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/P015638/1.The accuracy of Follicle Stimulating Hormone as a predictor of azoospermia in adult survivors of childhood cancer is unclear, with conflicting results in the published literature. A systematic review and post hoc analysis of combined data (n = 367) were performed on all published studies containing extractable data on both serum Follicle Stimulating Hormone concentration and semen concentration in survivors of childhood cancer. PubMed and Medline databases were searched up to March 2017 by two blind investigators. Articles were included if they contained both serum FSH concentration and semen concentration, used World Health Organisation certified methods for semen analysis, and the study participants were all childhood cancer survivors. There was no evidence for either publication bias or heterogeneity for the five studies. For the combined data (n = 367) the optimal Follicle Stimulating Hormone threshold was 10.4 IU/L with specificity 81% (95% CI 76%–86%) and sensitivity 83% (95% CI 76%–89%). The AUC was 0.89 (95%CI 0.86–0.93). A range of threshold FSH values for the diagnosis of azoospermia with their associated sensitivities and specificities were calculated. This study provides strong supporting evidence for the use of serum Follicle Stimulating Hormone as a surrogate biomarker for azoospermia in adult males who have been treated for childhood cancer.Publisher PDFPeer reviewe

    Spermatogonial quantity in human prepubertal testicular tissue collected for fertility preservation prior to potentially sterilizing therapy

    Get PDF
    STUDY QUESTION: Does chemotherapy exposure (with or without alkylating agents) or primary diagnosis affect spermatogonial quantity in human prepubertal testicular tissue? SUMMARY ANSWER: Spermatogonial quantity is significantly reduced in testes of prepubertal boys treated with alkylating agent therapies or with hydroxyurea for sickle cell disease. WHAT IS KNOWN ALREADY: Cryopreservation of spermatogonial stem cells, followed by transplantation into the testis after treatment, is a proposed clinical option for fertility restoration in children. The key clinical consideration behind this approach is a sufficient quantity of healthy cryopreserved spermatogonia. However, since most boys with malignancies start therapy with agents that are not potentially sterilizing, they will have already received some chemotherapy before testicular tissue cryopreservation is considered. STUDY DESIGN, SIZE, DURATION: We examined histological sections of prepubertal testicular tissue to elucidate whether chemotherapy exposure or primary diagnosis affects spermatogonial quantity. Quantity of spermatogonia per transverse tubular cross-section (S/T) was assessed in relation to treatment characteristics and normative reference values in histological sections of paraffin embedded testicular tissue samples collected from 32 consecutive boy patients (aged 6.3 +/- 3.8 [mean +/- SD] years) between 2014 and 2017, as part of the NORDFERTIL study, and in 14 control samples (from boys aged 5.6 +/- 5.0 [mean +/- SD] years) from an internal biobank. PARTICIPANTS/MATERIALS, SETTING, METHODS: Prepubertal boys in Sweden, Finland and Iceland who were facing treatments associated with a very high risk of infertility, were offered the experimental procedure of testicular cryopreservation. Exclusion criteria were testicular volumes > 10 ml and high bleeding or infection risk. There were 18 patients with a diagnosis of malignancy and 14 patients a nonmalignant diagnosis. While 20 patients had the testicular biopsy performed 1-45 days after chemotherapy, 12 patients had not received any chemotherapy. In addition, 14 testicular tissue samples of patients with no reported testicular pathology, obtained from the internal biobank of the Department of Pathology at Karolinska University Hospital, were included as control samples in addition to reference values obtained from a recently published meta-analysis. The quantity of spermatogonia was assessed by both morphological and immunohistochemical analysis. MAIN RESULTS AND THE ROLE OF CHANCE: The main finding was a significant reduction in spermatogonial cell counts in boys treated with alkylating agents or with hydroxyurea for sickle cell disease. The mean S/T values in boys exposed to alkylating agents (0.2 +/- 0.3, n = 6) or in boys with sickle cell disease and exposed to hydroxyurea (0.3 +/- 0.6, n = 6) were significantly lower (P = 0.003 and P = 0.008, respectively) than in a group exposed to non-alkylating agents or in biobank control samples (1.7 +/- 1.0, n = 8 and 4.1 +/- 4.6, n = 14, respectively). The mean S/T values of the testicular tissue samples included in the biobank control group and the patient group exposed to nonalkylating agents were within recently published normative reference values. LIMITATIONS, REASONS FOR CAUTION: Normal testicular tissue samples included in this study were obtained from the internal biobank of Karolinska University Hospital. Samples were considered normal and included in the study if no testicular pathology was reported in the analysed samples. However, detailed information regarding previous medical treatments and testicular volumes of patients included in this biobank were not available. WIDER IMPLICATIONS OF THE FINDINGS: This study summarizes, for the first time, spermatogonial quantity in a prepubertal patient cohort just before and after potentially sterilizing treatments. Boys facing cancer and cytotoxic therapies are regarded as the major group who will benefit from novel fertility preservation techniques. There are no previous reports correlating spermatogonial quantity to cumulative exposure to alkylating agents and anthracyclines (non-alkylating agents) and no information about the timing of cytotoxic exposures among this particular patient cohort. For prepubertal boys in whom fertility preservation is indicated, testicular tissue should be obtained before initiation of chemotherapy with alkylating agents, whilst for those with sickle cell disease and treated with hydroxyurea, this approach to fertility preservation may not be feasible. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by grants from The Swedish Childhood Cancer Foundation (PR2016-0124; TJ2016-0093; PR2015-0073, TJ2015-0046) (J.-B.S. and K.J.), the Jane and Dan Olssons Foundation (2016-33) (J.-B.S.), the Finnish Cancer Society (K.J.), the Foundation for Paediatric Research (J.-B.S.), Kronprinsessan Lovisas Forening For Barnasjukvard/Stiftelsen Axel Tielmans Minnesfond, Samariten Foundation (J.-B.S.), the Vare Foundation for Paediatric Cancer Research (K.J.) and the Swedish Research Council (2012-6352) (O.S.). R.T.M. was supported by a Wellcome Trust Fellowship (09822). J.P.A.-L. and M.K. were supported by the ITN Marie Curie program 'Growsperm' (EU-FP7-PEOPLE-2013-ITN 603568). The authors declare no conflicts of interest.Peer reviewe

    Sperm counts and endocrinological markers of spermatogenesis in long-term survivors of testicular cancer

    No full text
    BACKGROUND: The objective of this study was to assess markers of spermatogenesis in long-term survivors of testicular cancer (TC) according to treatment, and to explore correlations between the markers and associations with achieved paternity following TC treatment. METHODS: In 1191 TC survivors diagnosed between 1980 and 1994, serum-follicle stimulating hormone (s-FSH; n=1191), s-inhibin B (n=441), and sperm counts (millions per ml; n=342) were analysed in a national follow-up study in 1998–2002. Paternity was assessed by a questionnaire. RESULTS: At median 11 years follow-up, 44% had oligo- (<15 millions per ml; 29%) or azoospermia (15%). Sperm counts and s-inhibin B were significantly lower and s-FSH was higher after chemotherapy, but not after radiotherapy (RT), when compared with surgery only. All measures were significantly more abnormal following high doses of chemotherapy (cisplatin (Cis)>850 mg, absolute cumulative dose) compared with lower doses (Cis ⩽850 mg). Sperm counts were moderately correlated with s-FSH (−0.500), s-inhibin B (0.455), and s-inhibin B : FSH ratio (−0.524; all P<0.001). All markers differed significantly between those who had achieved post-treatment fatherhood and those with unsuccessful attempts. CONCLUSION: The RT had no long-term effects on the assessed markers of spermatogenesis, whereas chemotherapy had. At present, the routine evaluation of s-inhibin B adds little in the initial fertility evaluation of TC survivors

    Iatrogenic Genetic Damage of Spermatozoa

    No full text
    corecore