1,121 research outputs found
Small linear wind tunnel saltation experiments: Some experiences
Since the wind tunnels proposed to be used for the Space Station Planetology Experiments are of a rather limited size, some experience and techniques used for saltation experiments in a small linear wind tunnel may be of interest. Three experiments will be presented. The first concerns a length effect of saltation mass flux in which the size of the wind tunnel exaggerates the physical process taking place. The second experiment concerns a nonoptical technique that does not interfere with flow and by which momentum flux to the floor may be measured. The technique may also be used to calculate saltation flux (using appropriate assumptions). The third experiment concerns the use of the momentum equation to estimate momentum fluxes by difference
Assessing landscape dust emission potential using combined ground‐based measurements and remote sensing data
Modeled estimates of aeolian dust emission can vary by an order of magnitude due to the spatiotemporal heterogeneity of emissions. To better constrain location and magnitude of emissions, a surface erodibility factor is typically employed in models. Several landscape-scale schemes representing surface dust-emission potential for use in models have recently been proposed, but validation of such schemes has only been attempted indirectly with medium-resolution remote sensing of mineral aerosol loadings and high-resolution land-surface mapping. In this study, we used dust-emission source points identified in Namibia with Landsat imagery together with field-based dust-emission measurements using a Portable In-situ Wind Erosion Laboratory (PI-SWERL) wind tunnel to assess the performance of schemes aiming to represent erodibility in global dust-cycle modeling. From analyses of the surface and samples taken at the time of wind tunnel testing, a Boosted Regression Tree analysis identified the significant factors controlling erodibility based on PI-SWERL dust flux measurements and various surface characteristics, such as soil moisture, particle size, crusting degree and mineralogy. Despite recent attention to improving the characterisation of surface dust-emission potential, our assessment indicates a high level of variability in the measured fluxes within similar geomorphologic classes. This variability poses challenges to dust modelling attempts based on geomorphology and/or spectral-defined classes. Our approach using high-resolution identification of dust sources to guide ground-based testing of emissivity offers a valuable means to help constrain and validate dust-emission schemes. Detailed determination of the relative strength of factors controlling emission can provide further improvement to regional and global dust-cycle modeling
Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats
Bats are one of the most successful mammalian groups, even though their foraging activities are restricted to the hours of twilight and night-time. Some studies suggested that bats became nocturnal because of overheating when flying in daylight. This is because—in contrast to feathered wings of birds—dark and naked wing membranes of bats efficiently absorb short-wave solar radiation. We hypothesized that bats face elevated flight costs during daylight flights, since we expected them to alter wing-beat kinematics to reduce heat load by solar radiation. To test this assumption, we measured metabolic rate and body temperature during short flights in the tropical short-tailed fruit bat Carollia perspicillata at night and during the day. Core body temperature of flying bats differed by no more than 2°C between night and daytime flights, whereas mass-specific CO2 production rates were higher by 15 per cent during daytime. We conclude that increased flight costs only render diurnal bat flights profitable when the relative energy gain during daytime is high and risk of predation is low. Ancestral bats possibly have evolved dark-skinned wing membranes to reduce nocturnal predation, but a low degree of reflectance of wing membranes made them also prone to overheating and elevated energy costs during daylight flights. In consequence, bats may have become trapped in the darkness of the night once dark-skinned wing membranes had evolved
Hierarchically coupled ultradian oscillators generating robust circadian rhythms
Ensembles of mutually coupled ultradian cellular oscillators have been proposed by a number of authors to explain the generation of circadian rhythms in mammals. Most mathematical models using many coupled oscillators predict that the output period should vary as the square root of the number of participating units, thus being inconsistent with the well-established experimental result that ablation of substantial parts of the suprachiasmatic nuclei (SCN), the main circadian pacemaker in mammals, does not eliminate the overt circadian functions, which show no changes in the phases or periods of the rhythms. From these observations, we have developed a theoretical model that exhibits the robustness of the circadian clock to changes in the number of cells in the SCN, and that is readily adaptable to include the successful features of other known models of circadian regulation, such as the phase response curves and light resetting of the phase
OPEN XAL Status Report 2015
MOPW1050International audienceOpen XAL is an accelerator physics software platformdeveloped in collaboration among several facilitiesaround the world. The Open XAL collaboration wasformed in 2010 to port, improve and extend the successfulXAL platform used at the Spallation Neutron Source foruse in the broader accelerator community and to establishit as the standard platform for accelerator physicssoftware. The site-independent core is complete, activeapplications have been ported, and now we are in theprocess of verification and transitioning to using OpenXAL in production. This paper will present the currentstatus and a roadmap for this project
Open XAL status Report 2015
Open XAL is an accelerator physics software platform developed in collaboration among several facilities around the world. The Open XAL collaboration was formed in 2010 to port, improve and extend the successful XAL platform used at the Spallation Neutron Source for use in the broader accelerator community and to establish it as the standard platform for accelerator physics software. The site-independent core is complete, active applications have been ported, and now we are in the process of verification and transitioning to using Open XAL in production. This paper will present the current status and a roadmap for this project
Distant Voices: Learners' Stories About the Affective Side of Learning a Language at a Distance
Learning a language at a distance has its own special challenges. The remoteness of the learning context can mean isolation for the learner, communication difficulties for the teacher and problems of access for the researcher. Yet distance language learners are likely to be no more skilled in self-regulation than classroom learners, and to require high levels of support. Research tools are needed, therefore, which allow them to talk freely about their learning in order to help distance educators target support appropriately. This paper draws on data from two pilot ethnographic studies of distance language learners using think-aloud protocols to access their thought processes as they tackled two designated language tasks. They were carried out as part of a wider study in each case to investigate aspects of affect including beliefs, motivation and anxiety. The audio-taped voices provided rich insights into the advantages and disadvantages, pleasures and frustrations, comforts and anxieties of learning a language at a distance, and the strategies learners use to manage in a distance environment. The studies underlined the importance of listening to students and using their voices as a basis for discussion on improving aspects of the design and delivery of distance language courses
A Small but Efficient Collaboration for the Spiral2 Control System Development
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/tucobab01.pdfThe Spiral2 radioactive ion beam facility to be commissioned in 2014 at Ganil (Caen) is built within international collaborations. This also concerns the control system development shared by three laboratories: Ganil has to coordinate the control and automated systems work packages, CEA/IRFU is in charge of the "injector" (sources and low energy beam lines) and the LLRF, CNRS/IPHC provides the emittancemeters and a beam diagnostics platform. Besides the technology Epics based, this collaboration, although being handled with a few people, nevertheless requires an appropriate and tight organization to reach the objectives given by the project. This contribution describes how, started in 2006, the collaboration for controls has been managed both from the technological point of view and the organizational one, taking into account not only the previous experience, technical background or skill of each partner, but also their existing working practices and "cultural" approaches. A first feedback comes from successful beam tests carried out at Saclay and Grenoble; a next challenge is the migration to operation, Ganil having to run Spiral2 as the other members are moving to new projects
Field Measurements of Terrestrial and Martian Dust Devils
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
- …