55 research outputs found

    The America Economic Crisis Of 2009/2010: Three Pillars Of American Strength That Will Lead To Recovery

    Get PDF
    The notion of the Fall of the American Empire (Wojtowicz, 1993) is equivalent to the Peter Principal in that positive realization will always prevail over the negative perspective. Wojtowicz (1993) contends that Isaac Asimov wrote his foundation stories to show that every empire, even the most powerful one, has to fall eventually. Lawrence Peter (1984), an educator and hierarchiologist, argued that each manager will rise to the level in which he or she will fail. Inevitably, the Peter Principal failed because it placed a negative connotation on managerial growth. The same thing holds true with the Failure of the American Empire. America cannot fail because while there are many foundations of strength that has held America together since the American Revolution, there are three pillars that will help America continue to prosper. The three pillars are the strength of the military, the excellent education system, and the spirit of democracy that has led to capitalism. The spirit of democracy as Abraham Lincoln exemplifies as “A government of people, by the people, for the people,” has kept America vibrant and open for people to rise to the highest office in the free world (Powell and Powell, 1918). In the philosophical Age of Enlightenment, John Locke, a puritan in the England of Cromwell, put forth a new civil order: law based on reason, a government deriving its power from the governed, liberty to pursue individual goals as a natural right, and private property and its use in the pursuit of happiness (Wren and Bedian, 2009). These four ideas provide the bases of how our founders designed the America of today. This paper provides an overview of the three pillars that will influence the economic recovery of America in a positive way

    Multi-modal Biomarkers Quantify Recovery in Autoimmune Autonomic Ganglionopathy

    Get PDF
    Objective: To evaluate patients with ganglionic acetylcholine receptor antibody (gAChR‐Ab) positive autoimmune autonomic ganglionopathy using a multi‐modal testing protocol to characterise their full clinical phenotype and explore biomarkers to quantify immunotherapy response. Methods: Cohort study of thirteen individuals (seven female; 21–69 years) with autonomic failure and gAChR‐Ab>100pM identified between 2005–2019. From 2018, all patients were longitudinally assessed with cardiovascular, pupillary, urinary, sudomotor, lacrimal and salivary testing, and COMPASS‐31 autonomic symptom questionnaires. The orthostatic intolerance ratio was calculated by dividing change in systolic blood pressure over time tolerated on head‐up tilt. Eleven patients received immunotherapy. Results: At first assessment, all 13 patients had cardiovascular and pupillary impairments, 7/8 had post‐ganglionic sudomotor dysfunction, 9/11 had urinary retention and xeropthalmia, and 6/8 had xerostomia. After immunotherapy, there were significant improvements in orthostatic intolerance ratio (33.3[17.8–61.3] to 5.2[1.4–8.2], P = .007), heart rate response to deep breathing (1.5[0.0–3.3] to 4.5[3.0–6.3], P = .02), pupillary constriction to light (12.0[5.5–18.0] to 19.0[10.6–23.8]%, P = .02), saliva production (0.01[0.01–0.05] to 0.08[0.02–0.20]g/min, P = .03) and COMPASS‐31 scores (52 to 17, P = .03). Orthostatic intolerance ratio correlated with autonomic symptoms at baseline (r = 0.841, P = .01) and following immunotherapy (r = 0.889, P = .02). Immunofluorescence analyses of skin samples from a patient 32 years after disease onset showed loss of nerve fibres supplying the dermal autonomic adnexa and epidermis, with clear improvements following immunotherapy. Interpretation: Patients with autoimmune autonomic ganglionopathy demonstrated objective evidence of widespread sympathetic and parasympathetic autonomic failure, with significant improvements after immunotherapy. Quantitative autonomic biomarkers should be used to define initial deficits, guide therapeutic decisions, and document treatment response

    Biallelic mutations in neurofascin cause neurodevelopmental impairment and peripheral demyelination.

    Get PDF
    Axon pathfinding and synapse formation are essential processes for nervous system development and function. The assembly of myelinated fibres and nodes of Ranvier is mediated by a number of cell adhesion molecules of the immunoglobulin superfamily including neurofascin, encoded by the NFASC gene, and its alternative isoforms Nfasc186 and Nfasc140 (located in the axonal membrane at the node of Ranvier) and Nfasc155 (a glial component of the paranodal axoglial junction). We identified 10 individuals from six unrelated families, exhibiting a neurodevelopmental disorder characterized with a spectrum of central (intellectual disability, developmental delay, motor impairment, speech difficulties) and peripheral (early onset demyelinating neuropathy) neurological involvement, who were found by exome or genome sequencing to carry one frameshift and four different homozygous non-synonymous variants in NFASC. Expression studies using immunostaining-based techniques identified absent expression of the Nfasc155 isoform as a consequence of the frameshift variant and a significant reduction of expression was also observed in association with two non-synonymous variants affecting the fibronectin type III domain. Cell aggregation studies revealed a severely impaired Nfasc155-CNTN1/CASPR1 complex interaction as a result of the identified variants. Immunofluorescence staining of myelinated fibres from two affected individuals showed a severe loss of myelinated fibres and abnormalities in the paranodal junction morphology. Our results establish that recessive variants affecting the Nfasc155 isoform can affect the formation of paranodal axoglial junctions at the nodes of Ranvier. The genetic disease caused by biallelic NFASC variants includes neurodevelopmental impairment and a spectrum of central and peripheral demyelination as part of its core clinical phenotype. Our findings support possible overlapping molecular mechanisms of paranodal damage at peripheral nerves in both the immune-mediated and the genetic disease, but the observation of prominent central neurological involvement in NFASC biallelic variant carriers highlights the importance of this gene in human brain development and function

    The +4G Site in Kozak Consensus Is Not Related to the Efficiency of Translation Initiation

    Get PDF
    The optimal context for translation initiation in mammalian species is GCCRCCaugG (where R = purine and “aug” is the initiation codon), with the -3R and +4G being particularly important. The presence of +4G has been interpreted as necessary for efficient translation initiation. Accumulated experimental and bioinformatic evidence has suggested an alternative explanation based on amino acid constraint on the second codon, i.e., amino acid Ala or Gly are needed as the second amino acid in the nascent peptide for the cleavage of the initiator Met, and the consequent overuse of Ala and Gly codons (GCN and GGN) leads to the +4G consensus. I performed a critical test of these alternative hypotheses on +4G based on 34169 human protein-coding genes and published gene expression data. The result shows that the prevalence of +4G is not related to translation initiation. Among the five G-starting codons, only alanine codons (GCN), and glycine codons (GGN) to a much smaller extent, are overrepresented at the second codon, whereas the other three codons are not overrepresented. While highly expressed genes have more +4G than lowly expressed genes, the difference is caused by GCN and GGN codons at the second codon. These results are inconsistent with +4G being needed for efficient translation initiation, but consistent with the proposal of amino acid constraint hypothesis

    The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input

    Get PDF
    Descending controls of spinal nociceptive processing play a critical role in the development of inflammatory hyperalgesia. Acute peripheral nociceptor sensitization drives spinal sensitization and activates spino–supraspinal–spinal loops leading to descending inhibitory and facilitatory controls of spinal neuronal activity that further modify the extent and degree of the pain state. The afferent inputs from hairy and glabrous skin are distinct with respect to both the profile of primary afferent classes and the degree of their peripheral sensitization. It is not known whether these differences in afferent input differentially engage descending control systems to different extents or in different ways. Injection of complete Freund's adjuvant resulted in inflammation and swelling of hairy hind foot skin in rats, a transient thermal hyperalgesia lasting 72 h). In hairy skin, transient hyperalgesia was associated with sensitization of withdrawal reflexes to thermal activation of either A- or C-nociceptors. The transience of the hyperalgesia was attributable to a rapidly engaged descending inhibitory noradrenergic mechanism, which affected withdrawal responses to both A- and C-nociceptor activation and this could be reversed by intrathecal administration of yohimbine (α-2-adrenoceptor antagonist). In glabrous skin, yohimbine had no effect on an equivalent thermal inflammatory hyperalgesia. We conclude that acute inflammation and peripheral nociceptor sensitization in hind foot hairy skin, but not glabrous skin, rapidly activates a descending inhibitory noradrenergic system. This may result from differences in the engagement of descending control systems following sensitization of different primary afferent classes that innervate glabrous and hairy skin

    Light-evoked Somatosensory Perception of Transgenic Rats That Express Channelrhodopsin-2 in Dorsal Root Ganglion Cells

    Get PDF
    In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG) neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2) transgene is driven by the Thy-1.2 promoter. In one of them, W-TChR2V4, some neurons were endowed with photosensitivity by the introduction of the ChR2 gene, coding an algal photoreceptor molecule. The DRG neurons expressing ChR2 were immunohistochemically identified using specific antibodies to the markers of mechanoreceptive or nociceptive neurons. Their peripheral nerve endings in the plantar skin as well as the central endings in the spinal cord were also examined. We identified that ChR2 is expressed in a certain population of large neurons in the DRG of W-TChR2V4. On the basis of their morphology and molecular markers, these neurons were classified as mechanoreceptive but not nociceptive. ChR2 was also distributed in their peripheral sensory nerve endings, some of which were closely associated with CK20-positive cells to form Merkel cell-neurite complexes or with S-100-positive cells to form structures like Meissner's corpuscles. These nerve endings are thus suggested to be involved in the sensing of touch. Each W-TChR2V4 rat showed a sensory-evoked behavior in response to blue LED flashes on the plantar skin. It is thus suggested that each rat acquired an unusual sensory modality of sensing blue light through the skin as touch-pressure. This light-evoked somatosensory perception should facilitate study of how the complex tactile sense emerges in the brain

    Retroviral matrix and lipids, the intimate interaction

    Get PDF
    Retroviruses are enveloped viruses that assemble on the inner leaflet of cellular membranes. Improving biophysical techniques has recently unveiled many molecular aspects of the interaction between the retroviral structural protein Gag and the cellular membrane lipids. This interaction is driven by the N-terminal matrix domain of the protein, which probably undergoes important structural modifications during this process, and could induce membrane lipid distribution changes as well. This review aims at describing the molecular events occurring during MA-membrane interaction, and pointing out their consequences in terms of viral assembly. The striking conservation of the matrix membrane binding mode among retroviruses indicates that this particular step is most probably a relevant target for antiviral research
    corecore