126 research outputs found

    High-resolution characterization of the diffusion of light chemical elements in metallic components by scanning microwave microscopy

    Get PDF
    International audienceAn original sub-surface, high spatial resolution tomographic technique based on scanning microwave microscopy (SMM) is used to visualize in-depth materials with different chemical compositions. A significant phase difference in SMM between aluminum and chromium buried patterns has been observed. Moreover this technique was used to characterize a solid solution of a light chemical element (oxygen) in a metal lattice (zirconium). The large solubility of the oxygen in zirconium leads to modifications of the properties of the solid solution that can be measured by the phase shift signal in the SMM technique. The signal obtained in cross-section of an oxidized Zr sample shows the excellent agreement between phase shift profiles measured at different depths. Such a profile can reveal the length of diffusion of the oxygen in zirconium under the surface. The comparison with the oxygen concentration measured by nuclear reaction analysis shows excellent agreement in terms of length of diffusion and spatial distribution of the oxygen. A rapid calibration shows a linear dependence between the phase shift and the oxygen concentration. The SMM method opens up new possibilities for indirect measurements of the oxygen concentration dissolved in the metal lattic

    Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy

    Get PDF
    This paper reports on advances toward quantitative non-destructive nanoscale subsurface investigation of a nanofabricated sample based on mode synthesizing atomic force microscopy with heterodyne detection, addressing the need to correlate the role of actuation frequencies of the probe f(p) and the sample f(s) with depth resolution for 3D tomography reconstruction. Here, by developing a simple model and validating the approach experimentally through the study of the nanofabricated calibration depth samples consisting of buried metallic patterns, we demonstrate avenues for quantitative nanoscale subsurface imaging. Our findings enable the reconstruction of the sample depth profile and allow high fidelity resolution of the buried nanostructures. Non-destructive quantitative nanoscale subsurface imaging offers great promise in the study of the structures and properties of complex systems at the nanoscale

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3

    Get PDF
    Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements

    Arbuscular mycorrhizal community structure on co-existing tropical legume trees in French Guiana

    Get PDF
    Aims We aimed to characterise the arbuscular mycorrhizal fungal (AMF) community structure and potential edaphic determinants in the dominating, but poorly described, root-colonizing Paris-type AMF community on co-occurring Amazonian leguminous trees. Methods Three highly productive leguminous trees (Dicorynia guianensis, Eperua falcata and Tachigali melinonii were targeted) in species-rich forests on contrasting soil types at the Nouragues Research Station in central French Guiana. Abundant AMF SSU rRNA amplicons (NS31-AM1 & AML1-AML2 primers) from roots identified via trnL profiling were subjected to denaturing gradient gel electrophoresis (DGGE), clone library sequencing and phylogenetic analysis. Results Classical approaches targeting abundant SSU amplicons highlighted a diverse root-colonizing symbiotic AMF community dominated by members of the Glomeraceae. DGGE profiling indicated that, of the edaphic factors investigated, soil nitrogen was most important in influencing the AMF community and this was more important than any host tree species effect. Conclusions Dominating Paris-type mycorrhizal leguminous trees in Amazonian soils host diverse and novel taxa within the Glomeraceae that appear under edaphic selection in the investigated tropical forests. Linking symbiotic diversity of identified AMF taxa to ecological processes is the next challenge ahead

    The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling

    Full text link

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years
    corecore