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Abstract
Aims: We aimed at a characterisation of the arbuscular mycorrhizal fungal (AMF) 
community structure and potential edaphic determinants in the dominating, but 
poorly  described,  root-colonizing  Paris-type  AMF  community  on  co-occurring 
Amazonian leguminous trees.
Methods: We targeted three highly productive co-occurring leguminous species 
(Dicorynia  guianensis, Eperua  falcata and  Tachigali  melinonii)  in  species-rich 
forests on contrasting soil types at the Nouragues Research Station in central 
French Guiana.  Abundant AMF SSU rRNA amplicons (NS31-AM1 & AML1-AML2 
primers)  from roots  identified via  trnL  profiling  were  subjected to  denaturing 
gradient gel electrophoresis (DGGE), clone library sequencing and phylogenetic 
analysis.
Results: Classical approaches targeting abundant SSU amplicons highlighted a 
diverse root-colonizing symbiotic AMF community dominated by members of the 
Glomeraceae.  DGGE profiling indicated that, of the edaphic factors investigated, 
soil nitrogen was most important in influencing the AMF community and this was 
more important than any host tree species effect.
Conclusions:  Dominating  Paris-type  mycorrhizal  leguminous  tree  species  in 
Amazonian soils host diverse and novel taxa within the Glomeraceae that appear 
under edaphic selection in the investigated tropical forests.  Linking symbiotic 
diversity of  identified AMF taxa to ecological  processes is  the next challenge 
ahead.

Introduction

Tropical forests are exceptionally species rich, holding over half the 

world’s species (Dirzo & Raven 2003;  Gibson et al. 2011).  Most 

ecological studies in tropical forests have examined above-ground 

communities (Ghazoul & Sheil 2010) whilst microscopic taxa found 

below-ground such as fungi and bacteria have received considerably 

less attention, at least partly due to their cryptic nature (Aime & 

Brearley  2011).   Compared to  other  microscopic  taxa,  arbuscular 

mycorrhizal  fungi  (AMF;  phylum  Glomeromycota)  have  been 

relatively well studied.  These fungi form beneficial root symbiotic 
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associations, defined by fungal arbuscular structures formed within 

host cortical cells, in a large proportion of the world’s terrestrial flora 

(Smith & Read 2008) including many of the more than 20,000 tree 

species  estimated  from  Neotropical  forests  (Slik  et  al.  2015). 

However, classical morphological descriptions by Gallaud (1904) and 

numerous subsequent studies, reviewed by Smith and Smith (1997), 

confirmed  that  AMF  fungi  form  both  Arum-  and  Paris-type 

colonization structures in compatible mycorrhizal plant hosts.  The 

former type are characterised as typical AMF but, in the latter, root 

cortical  cells  do not host arbuscules but are heavily colonized by 

intracellular  hyphal  coils.   Tropical  forest  trees  and  forest  herbs 

appear to host a predominance of Paris-type mycorrhizas (Alexander 

1989) including the target leguminous trees at our Amazonian study 

site in French Guiana (Béreau & Garbaye 1994; Béreau et al. 2004; 

de  Grandcourt  et  al.  2004).   Whilst  it  appears  that  AMF  alpha-

diversity  can  be  higher  in  tropical  than  temperate  ecosystems 

(Husband et  al.  2002;  Haug et  al.  2010,  2013;  Camenzind et  al. 

2014), this is not always the case with overlap shown in the number 

of  AMF  taxa  recorded  from  these  divergent  ecosystems.   It  is, 

however, difficult to make robust comparisons due to the paucity of 

tropical  studies  coupled  with  inconsistent  methodologies, 

particularly  as the field  of  molecular  ecology advances (e.g.  next 

generation sequencing; Shendure & Ji 2008).

Because mycorrhizal fungi form a key functional interface between 

plant roots and soil, they play a major role in plant nutrition (Smith & 

Read  2008).  Leguminous  plants  and  trees  also  host  symbiotic 

nitrogen-fixing bacteria that require large amounts of phosphorus (P) 

for nodule development and nitrogenase functioning (e.g. Mortimer 

et  al.  2008  and  references  therein).   Nitrogen  (N)  fixation  in 

leguminous  plants  in  general  and  tropical  trees  in  particular  is 
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therefore highly dependent upon efficient P uptake, especially in P-

deficient  tropical  soils,  which  is  mediated  by  the  AMF  symbiosis 

(Plassard & Dell 2010).  In addition, AMF are known to be important 

in structuring plant communities with different taxa or associations 

of taxa having differential effects on plant growth (van der Heijden 

et al.  1998; Munkvold et al.  2004; Koch et al.  2006; Roger et al. 

2013).   For  example,  Kiers  et  al  (2000)  demonstrated differential 

responses  to  AMF  inoculum  from  conspecific  or  heterospecific 

tropical tree seedlings and Pizano et al. (2011) found that AMF from 

tropical  landslide  sites  had  differing  effects  on  plant  growth 

compared to those from light-gap sites, both studies indicating the 

potential  role  of  AMF  in  influencing  plant  communities. 

Understanding  the  determinants  of  species  distributions,  through 

studying  their  niche  requirements,  and  elucidating  ecological 

community structure is a fundamental area of research in ecology 

and is important to support credible assessment of environmental 

change, and inform evidence-based management of ecosystems.  As 

AMF  are  obligately  symbiotic  organisms,  both  the  host  species 

(Lovelock et al. 2003; Helgason et al. 2007; Sy ́korová et al. 2007; de 

Oliveira Freitas et al. 2014) as well as edaphic (Fitzsimmons et al. 

2008;  Ji  et  al.  2012;  de  Oliveira  Freitas  et  al.  2014)  and 

biogeographical (Hazard et al 2011; Kivlin et al. 2011; Öpik et al. 

2013) factors will influence AMF community structure but, in many 

cases,  it  is  difficult  to  clearly  disentangle  these  due  to  edaphic 

sorting of the host plant.  Surprisingly few studies have attempted to 

do this (but see Fitzsimmons et al. 2008; Dumbrell et al. 2010; Ji et 

al.  2012)  although  it  would  clearly  help  in  furthering  our 

understanding of AMF community structuring.

In  this  study,  we  examined  the  root  associated  AMF  fungal 

community on three co-occurring leguminous tree species of French 
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Guiana where legumes form many of the commonest tree species, 

making a significant contribution to stand basal area (ter Steege et 

al. 2006).   We hypothesised that: i) the  Paris-mycorrhizal status of 

the  target  legume tree  species  could  result  from colonization  by 

novel  AMF taxa,  ii)  host  tree  and soil  edaphic  specific  responses 

would be detectible in root colonizing fungal communities but iii) the 

co-ocurring  trees  would  form  a  core  AMF  community  with  the 

potential to form common mycelial networks.

Methods

Study site

The study was conducted at the Nouragues Research Station (within 

a National Nature Reserve) in central French Guiana (Bongers et al. 

2001; http://www.nouragues.cnrs.fr) with a diverse tree flora typical 

of much of the Guiana Shield (ter Steege et al. 2006; Gonzalez et al. 

2009).   The  sampling  was  restricted  to  the  Inselberg  camp area 

(4°05’N; 52°41’W) in minimally disturbed tropical forest where two 

large sampling plots (‘Grand Plateau’ and ‘Petit Plateau’) have been 

delimited.  These two plots have differing edaphic conditions: the 

Grand Plateau is based on a metamorphic geology with more fertile 

clay-rich soils and the Petit Plateau is based on a granitic geology 

with more sandy soils that are less fertile, although both are Ultisols 

(Poszwa et al. 2009).  The annual rainfall is around 2900 mm with a 

drier season from late August to early November.

Study species

We  investigated  three  legume  species  in  different  tribes  of  the 

Caesalpinioideae:  Dicorynia  guianensis Amshoff (tribe  Cassieae), 

Tachigali melinonii (Harms) Zarucchi & Herend. (syn.  Sclerolobium 

melinonii Harms;  tribe  Caesalpinieae)  and  Eperua  falcata Aublet 
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(tribe  Detarieae).   The  former  two  species  are  among  the  most 

important  trees,  in  terms of  carbon cycling, in  the Amazon basin 

(Fauset  et  al.  2015).   The  three  species  have  contrasting  root 

morphologies  with  Dicorynia  guianensis and  Tachigali  melinonii 

being  similar  to  one  another  with  thin,  highly  branched  roots  in 

contrast to  Eperua falcata that had thicker, poorly branching root 

systems with  short  roots  on long axes  (Béreau & Garbaye 1994; 

Supplementary  Figure  1).   All  three  species form  Paris-type 

mycorrhizal  associations  (Béreau  &  Garbaye  1994;  Béreau  et  al. 

2004; de Grandcourt et al. 2004).  Many Caesalp legumes possess 

ectomycorrhizal  (EcM)  associations  (Smith  &  Read  2008)  but 

following a careful visual assessment of sampled roots, no obvious 

EcM development was observed.  Dicorynia guianensis and Tachigali  

melinonii form prominent nodules and Eperua falcata has nodule-like 

structures on the roots whose function is not entirely clear (Sprent 

2001).

Field sampling

Root  samples  were  obtained from 12-16 randomly  selected trees 

each of  the  three  target  species  in  August  and  September  2009 

(trees were up to 1 m diameter; mean = 50.3 ± SD 20.3 cm).  At 

each tree, roots were exposed by careful excavation enabling them 

to be traced to a distance of  about 1.0 to 1.5 m from the trunk 

(Supplementary Figure 1a). Four samples of fine root material were 

cut  away  from the  surrounding  friable  organic  soil  with  any  soil 

adhering to the roots brushed off.  Root samples from each tree were 

combined together into a single plastic vial filled with silica gel for 

rapid drying.  Soil samples were taken from the areas immediately 

adjacent to root collection and combined into a single sample.  They 

were subsequently air-dried in the field and returned to the UK for 

analysis. 
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DNA extraction

In  the  laboratory,  dried  root  material  was  finely  chopped  and 

homogenised aseptically using a sterile scalpel and larger diameter 

sections were removed until all fragments were less than 2 mm in 

length.   No  obvious  spore  contamination  in  the  rhizoplane  was 

detected in these root fragments.  DNA extraction was performed on 

the  homogenised  roots  using  a  modification  of  the  method  of 

Heinonsalo et al. (2001) developed for highly pigmented Scots pine 

roots/mycorrhizas.   Briefly,  two extractions were made from each 

root  sample  starting  with  5  mg  material  each.   The  roots  were 

further ground using a micro-pestle and fine quartz sand, then 1 ml 

CTAB  buffer  with  1  %  PVP  was  added  and  the  sample  was 

periodically ground during an incubation at 65 °C for 1 hour.  The 

two extractions were then centrifuged at 16,000 RCF for 5 minutes 

and the supernatants  were separately  extracted twice with  equal 

volumes of  chloroform.   After  extraction,  the two aqueous layers 

were combined and precipitated together with an equal volume of 

chilled  isopropanol.   The  DNA  was  collected  by  centrifuging  at 

16,000 RCF for 30 minutes then removing the supernatant, then the 

pellet was washed twice by applying 200 μl chilled 70 % ethanol and 

centrifuging  for  5  minutes  at  7,000 RCF.   The  dried  pellets  were 

rehydrated in 25 μl TE buffer and stored at -20°C until use.

Host  plant  species  validation  by  trnL  amplicon  fragment 

length analysis

Although all the root samples were visually traced during sampling, 

we considered it  prudent to verify the identity and purity of  root 

samples.   We used  a  length  heterogeneity  PCR approach,  based 

upon  the  work  of  Ridgway  et  al.  (2003),  to  achieve  this.   The 

Genbank database was used to predict amplicon sizes for a PCR of 
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the plastid  trnL intron using primers c and d from Taberlet  et  al. 

(1991).   PCRs were  performed using the conditions  described by 

Gonzalez et al. (2009), but the c primer was modified with CY5 on 

the  5'  end  to  enable  compatibility  with  the  Beckman  fragment 

analysis system.  Amplicon lengths were measured and quantified 

using  a  Beckman  CEQ  8000  automated  sequencer  in  fragment 

analysis mode.  Direct sequencing of some of  the amplicons was 

performed  to  check  the  specificity  of  the  PCR  and  confirm  tree 

identities.  The c and d primers Taberlet et al. (1991) were used to 

obtain  sequence  reads  using  an  Applied  Biosystems  3730xl 

sequencer.

Mycorrhizal community profiling

The AMF community associated with each tree was compared using 

denaturing  gradient  gel  electrophoresis  (DGGE)  to  generate  a 

community  fingerprint  from  an  amplified  fragment  of  the  fungal 

small sub-unit rRNA gene.  PCR and DGGE were performed according 

to the method of Öpik et al. (2003), using primers AM1 (Helgason et 

al. 1998) and NS31 (Simon et al. 1992).  A GC clamp was added to 

the 5’ end of NS31 primer to stabilize the melting behaviour of the 

DNA fragments.  PCRs contained 2.5 U Taq (Bioline), 5  μl 10 x NH4 

reaction buffer, 1.5 mM MgCl2,  200 μM of each dNTP, 0.2 μM of each 

primer,  and were made up to  50  μl  volume with water and DNA 

template; they were performed in an MJ Research PTC-200 thermal 

cycler following cycling parameters in Öpik et al. (2003).  DGGE was 

carried  out  on  the  Bio-Rad  DCode  universal  mutation  detection 

system,  using  6  %  polyacrilamide  gels,  with  urea-formamide 

denaturant gradients of 22 to 35 %.  Electrophoresis was run at 60 

ºC and 75 V for 8 hours, with 32 ng DNA loaded into each well.  Gels 

were  stained  with  SYBR  Gold  (Molecular  Probes,  Leiden,  The 

Netherlands) and digitized using GeneGenius Imaging System from 

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228



Syngene.   We ran  two  DGGE gels:  the  first  had sixteen trees  of 

Tachigali melinonii ("Tachigali gel") and the second had a subset of 

nine of those sixteen trees plus nine Dicorynia guianensis and four 

Eperua  falcata ("Mixed  gel").   Gel  images  were  converted  to  a 

presence/absence  matrix  for  each  band  position  based  on  a 

systematic procedure using the plot RGB profile function of ImageJ 

(Schneider et al. 2012) to extract pixel values for each lane, followed 

by peak detection using LabPlot (http://labplot.sourceforge.net).  To 

correct  for  slight  skew in  the gels,  coloured reference  lines  were 

added across the gel  images linking lane markers and prominent 

reference  bands  before  peak  detection.   The  signatures  of  these 

lines  in  the  RGB pixel  profiles  from ImageJ  were  used  to  ensure 

accurate alignment of lane profiles before peak detection.

Determination of mycorrhizal taxa

Whilst  DGGE  requires  relatively  short,  variable  PCR  products  to 

achieve  good  separation  of  bands  on  the  gel,  for  accurate 

phylogenetic classification a longer sequence is preferable.   For this 

part of the study, we therefore used primers AML1 and AML2 that 

are reported to have better specificity and coverage of known AMF 

taxa compared to the AM1 and NS31 primers used for DGGE (Lee et 

al. 2008).  We chose six samples: three geographically close (< 300 

m) trees of each species from each of the Grand and Petit Plateaus. 

PCR products were produced using the protocol described by Lee et 

al.  (2008),  then  cloned  into  E.  coli using  an  Invitrogen  Topo  TA 

cloning kit.   Ten positive transformants from each tree were used 

directly in a colony PCR (Elliott  et  al.  2005) using vector primers 

M13F and M13R to check the insert size (approximately 800 base 

pairs).  Forty-eight successful inserts were sequenced from the T3 

priming site using an Applied Biosystems 3730xl sequencer.
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Sequences from forward and reverse primers were assembled using 

contig assembly program (Huang 1992) and single coverage regions 

were  discarded.   A  total  of  23  double  coverage  sequences  were 

obtained and these were clustered at 99 % similarity cutoff using cd-

hit-est  (Huang  et  al.  2010)  to  identify  unique  sequences. 

Approximate  species-level  OTUs  were  identified  using  UCLUST 

(Edgar 2010) with a 97 % similarity threshold.  A neighbour-joining 

phylogenetic tree was constructed from the unique sequences that 

exceeded 450 base pairs in length.  We included the top match from 

MaarjAM  (Öpik  et  al.  2010)  for  each  of  our  sequences  plus  all 

sequences associated with two of our host plants (presented in Öpik 

et al. 2013) in addition to several globally distributed taxa to provide 

a  wider  context.   We  also  included  the  three  top  matching 

sequences  from  a  BLAST  search  on  Genbank  and  any  closely 

matching named taxa.   In  some cases,  relevant  sequences  were 

excluded because the sequence regions did not overlap sufficiently 

with those reported in this study.  ClustalW (Thompson et al. 1994) 

was used to align the sequences and all gaps were removed before 

generation  of  the  distance  matrix  (Kimura  1980)  and  neighbour-

joining  phylogenetic  tree  (Saitou  &  Nei  1987),  using  the  APE 

package (Paradis et al. 2004) for R (R Core Team 2015).

Soil analyses

All  analyses  were  conducted  in  duplicate  on  soils  that  had  been 

ground to pass a 1 mm sieve.  The moisture content of the air-dried 

soil was determined by heating 5 g sub-samples to 105 °C for 24 h. 

Soil pH was measured by adding 5 g of soil to 12.5 ml of deionised 

water; it was stirred and left to equilibrate for 1 h before the pH was 

measured with  a Sartorius  PB-11 pH meter.   Carbon and N were 

determined  on a  LECO TruSpec  elemental  analyser.   Total  P  was 

determined by digesting 0.25 g samples in  5 ml  of  concentrated 
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sulphuric acid (with a lithium sulphate/selenium (100:1) catalyst) for 

8  hours  at  375  °C.   Samples  were  then  made  up  to  50  ml  in 

deionised  water  and  analysed  on  a  Varian  Vista  AX  Inductively 

Coupled Plasma Optical Emission Spectrometer (ICP-OES).  Cations 

(P, K, Ca & Mg) were extracted from 2.5 g samples that were shaken 

with 25 ml of Mehlich 1 solution for ten minutes before being filtered 

and analysed on a Thermo iCAP 6300 Duo ICP-OES.

Statistics

Rarefaction  curves  were  calculated  in  EstimateS  (100 

randomisations).   Redundancy  analysis  was  performed  using  the 

Vegan package (Oksanen et al. 2015) for R (R Core Team 2015) with 

a backwards-stepwise approach to select constraining variables.  We 

tested  whether  the  AMF  community  differed  in  relation  to  soil 

properties or host tree species using a PerMANOVA (Jaccard index, 

999 permutations), also in the Vegan package.

Results

Arbuscular mycorrhizal SSU amplification

 PCR success varied and was limited for more recalcitrant samples of 

Eperua falcata that had thick and highly pigmented roots (c. 40 %) 

when compared with  Dicorynia guianensis (c.  75 %) and  Tachigali  

melinonii (100  %).   Difficulties  amplifying  the  host  trnL  marker 

mirrored  difficulties  amplifying  the  fungal  SSU;  therefore  AMF 

amplification  failure  was  most  likely  due  to  PCR inhibition  rather 

than absence of fungi in the samples.

Plant species validation by trnL amplicon sizes

Double-coverage  trnL  sequences  were  obtained  from  Dicorynia 

guianensis and Eperua falcata (GenBank accessions: PENDING) with 
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99-100  %  identity  to  publicly  available  trnL  sequences  from  the 

target trees; sequencing of amplicons from Tachigali melinonii was 

unsuccessful.   In  almost all  samples,  the dominant trnL fragment 

sizes were within two base pairs of the predicted length (Table 1). 

We  removed  five  samples  from subsequent  analyses;  one  had  a 

much shorter fragment than expected (indicating that the tree was 

probably identified incorrectly) and four others had secondary peaks 

that were 10 % or more of the height of the main peak (indicating 

probable contamination with roots of other plants).  

Mycorrhizal community profiling by DGGE

Rarefaction curves (and comparison with Chao1 values) suggest that 

our  sampling  was  sufficiently  extensive  to  describe  the  AMF 

community on Dicorynia guianensis and Tachigali melinonii but not 

Eperua  falcata with  around  30  bands  found  for  the  former  two 

species and 25 for the latter (Fig. 1a) and a total of 34 bands for the 

community as a whole (using the Mixed gel).  The Chao1 estimate 

for the AMF community as a whole was 34.7  ± SD 1.3 indicating 

extensive sampling.  Within a species, c. 35-55 % of the bands were 

rare (i.e. restricted to one or two individual trees) with only a small 

proportion (< 12 %) found on more than 80 % of the trees within a 

species (Fig. 1b).  Around half of the bands were found on all three 

tree species with few restricted to a single host - mostly to Dicorynia 

guianensis (Fig. 2).  Of the bands that were shared between species, 

most were rare with the exception of one band that was found on 

around 80 % of  Dicorynia guianensis trees but no  Eperua falcata 

trees.

Root-colonizing  mycorrhizal  community  responses  to  tree 

species and soil chemistry
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The soils were acidic and low in nutrients but there were significant 

differences  between  the  Grand  and  Petit  Plateau,  with  the  Petit 

Plateau  soils  slightly  more  acidic  and  lower  in  the  major  plant 

nutrients  (Table  2).   Consequently,  there  were  also  differences 

between  the  tree  species  in  their  surrounding  edaphic  variables 

(Table 2) as  Dicorynia guianensis was more commonly sampled on 

the  Petit  Plateau  whereas  Eperua  falcata and  Tachigali  melinonii 

were more commonly sampled on the Grand Plateau.  In particular, 

soils  surrounding  Eperua  falcata were  highest  in  C,  N  and 

extractable  P  and  cations  whereas  those  surrounding  Dicorynia 

guianensis were lowest in all measured nutrients (Table 2).

The step-wise redundancy analysis model building process selected 

soil  N  as  the  only  constraining  variable  describing  the  AMF 

community structure (Fig. 3); N also appeared to separate the host 

trees on axis RDA1.  The significance on N on the AMF community 

was confirmed by PerMANOVA (F = 1.93,  r2 = 0.089,  p = 0.039). 

However, different host tree species were found on soils of differing 

N-status  (Table  2)  and  this  might  have  influenced  the  AMF 

community through host selection although this was not a significant 

determinant of at the data resolution available in this study (F = 

0.91, r2 = 0.084, p = 0.64).  

Phylogeny of mycorrhizal taxa

All of the sequences found on the six trees (Genbank accessions: 

KR706472-KR706484) were from the family Glomeraceae (within the 

order  Glomerales).   They  were  grouped  into  eight  approximate 

species-level  groups  with  >  97  %  similarity;  six  of  these  were 

singletons  found  on one  tree  only.   The  Chao  1  estimate  of  the 

number of phylogroups was 17: this was half that estimated from 

the  DGGE  bands  although  in  closer  agreement  with  the  number 
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predicted  when  rarefied  to  six  samples  (24.6  ±  SD 1.7).   Our 

sequences  did  not  match  with  any  named  AMF  taxa,  and, 

interestingly, did not cluster closely with sequences from two of the 

same host species in a site in French Guiana about 125 km distant 

(Öpik et al. 2013)  (Fig. 4).

Discussion

There  remains  a  critical  gap  in  the  literature  relating  to  tropical 

mycorrhizal  community  dynamics  that,  in  boreal  and  temperate 

biomes,  are  known  to  underpin  ecosystem  productivity  and 

multifunctionality  (Smith  and  Read,  2008;  van  der  Heijden  et  al. 

2015).   Earlier  research,  that  had targeted the same species-rich 

Amazonian forests in French Guiana, highlighted a predominance of 

Paris-,  as  opposed  to  more  commonly  studied,  Arum-type 

mycorrhizal  colonization  of  leguminous  trees  (Béreau  &  Garbaye 

1994; Béreau et al. 2004; de Grandcourt et al. 2004).  We provide 

here the first report on the diversity and identity of AMF known to 

form Paris- type mycorrhiza on three co-occurring leguminous trees 

on differing soil types in these northern Amazonian forests. 

The main aim of  our study was not  to  exhaustively  recover  AMF 

diversity, for which we would have used a specific set of primers for 

each order, but to determine the abundant root-associated taxa in 

our study system that are likely  to be symbiotically active.   This 

approach yielded an estimate of 34 AMF taxa detected in roots on 

the basis of SSU-DGGE banding that has been shown, via individual 

band  sub-cloning  and  sequencing,  to  underestimate  AMF  root-

colonizing diversity (Öpik et al. 2003), although it assumes we did 

not  have  any  non-specific  amplification  from  other  fungal  phyla 

(Kohout et al. 2014).  Our estimate still compares with other tropical 
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studies employing various classical and next generation sequencing 

methodologies,  for  example,  Aldrich-Wolfe  (2007)  found  31 

phylotypes by T-RFLP in Costa Rica, Husband et al. (2002) found 30 

taxa using a cloning and Sanger sequencing approach in Panama 

and  Camenzind  et  al.  (2014)  found  74  taxa  using  454-

pyrosequcncing  in  Ecuador.   However, comparisons  are  difficult 

between studies due to differing primers, sequencing platforms and 

clustering approaches.  It appeared that our sampling was saturated 

with eight to ten  samples, sufficient to sample the root-colonizing 

AMF community fully by DGGE.

Members of the Glomeraceae dominated the AMF community with 

no  evidence  of  the  abundant  presence  of  members  from  other 

families  or  orders  in  the  Glomeromycota.   This  was  somewhat 

surprising given the high abundance of Acualosporaceae in tropical 

spore-counting studies (e.g. Lovelock et al. 2003; Stürmer & Siqueira 

2011;  de Oliveira  Freitas  et  al.  2014)  including at  our  study  site 

(Martin et al. 2001; Oehl & Brearley, unpublished data).  It should be 

stressed that this is not a limitation of the primers developed by Lee 

et al. (2008) that efficiently amplify across the phylum.  At least part 

of this  restricted phylogenetic coverage is  likely due to the small 

number of sequences found so we should be careful not to over-

interpret from this small dataset. However, it raises the interesting 

possibility  that  a  phylogenetically  restricted  subset  of  AMF  taxa 

preferentially  form  structurally  distinct  Paris-type  mycorrhizal 

associations.  Öpik et al. (2013), employing 454 pyrosequencing at a 

similar study site in French Guiana, also found a similarly restricted 

subset  of  AMF  taxa  on  two  of  our  study  species.   Paris-type 

mycorrhizas appear to support extensive intracellular fungal coiling 

(Smith and Read 2008) that could physically prevent colonization by 

other AMF taxa thus restricting functional taxa representation due to 
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priority effects (Hepper et al. 1988; Werner and Kiers, 2015).  The 

restricted taxa detected on our target tree roots could, therefore, 

represent  a  natural  manifestation  of  a  phenomenon that  has,  to 

date, only been described in controlled laboratory experiments with 

young seedlings.  Our findings also support the hypothesis of Kivlin 

et al. (2011) of phylogenetic clustering within sites; perhaps, in this 

case, due to all the host trees being within the same family.  That 

the  identified  taxa  found  mostly  formed  highly-supported  unique 

clusters when compared to AMF taxa identified by Öpik et al. (2013) 

on  two  of  the  same  host  tree  species  additionally  supports  the 

hypothesis  of  Kivlin  et  al.  (2011)  of  high  beta  diversity  in  AMF. 

Finally, there is the possibility that these are legume specialist AMF 

as Sheublin et al. (2004) found clear differences between the AMF 

communities on legumes and non-legumes in a Dutch grassland.

The  clearest  relationship  between  soil  nutrients  and  AMF  taxa 

representation was seen for soil N.  A related study (Camenzind et 

al. 2014) in species rich tropical montane forest found reduced AMF 

species  richness  in  bulked  root  samples  in  response  to  N  and  P. 

Nitrogen  input  in  native  forests  will  be  greatly  dependent  on 

anthropogenic deposition rates but also associative and symbiotic N-

fixation involving legumes.  The legume tree species in this study 

are  productive  members  of  the  community  and  will  contribute 

significant organic N to the soil via litter inputs.  Spatial variability in 

N content was shown in these species-rich forest systems that could 

select  for  AMF taxa with  enhanced potential  organic  N-mobilizing 

activities (Hodge 2014).  For example, Martin et al. (2001) showed 

soils  under  Eperua  falcata to  be  more  enriched  in  N  than  those 

under Dicorynia guianensis in common with this study.  In our study, 

it  appeared  that  soil  N  had  a  greater  effect  that  host  species 

(although there  was  non-random association  of  tree  species  with 
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particular edaphic conditions) concurring with other recent studies 

pointing towards edaphic factors playing a more important role than 

host  species  in  structuring  AMF  communities  (Fitzsimmons  et  al. 

2008; Dumbrell et al. 2010; Ji et al. 2012).  With regard to common 

mycelial  networks,  our  data  provided some evidence of  potential 

inter-  and  intra-  host  species  networking  potential.   Mechanisms 

driving  restriction  to  limited  common  AMF-forming  taxa  in  these 

productive  leguminous  hosts  may  have  evolved  to  ensure 

networking  within  N-fixing  trees  in  a  highly  resource  competitive 

environment.  

For unequivocal  identification of  the host species in systems with 

diverse vegetation, the plastid trnL region offers a robust and rapid 

marker for confirmation of root sample identity with minor species-

specific trnL length variations likely reflecting intra-specific variation 

within  the  study  site.   Zeng  et  al.  (2015)  recently  reported 

successful  root  identification  of  11  tree  species  in  a  Chinese 

subtropical forest via trnL sequencing.  Although many studies adopt 

a  root-tracing  approach,  the  important  strategy  taken  here  to 

confirm host species via molecular tools is rarely adopted and we 

promote  this  as  a  straightforward  and  appropriate  method  for 

certainty in mixed species communities where reference material is 

available.  As well as trnL (Dumbrell et al. 2010; Zeng et al. 2015), 

other suitable gene regions might  include  trnH-psbA (Jones et al. 

2011), rbcL or matK (CBOL Plant Working Group 2009).

One of the advantages to our ‘classical’ sequencing approach is that 

we detected the taxa that are more abundant in the tree roots and, 

therefore,  functionally  most  important  in  terms  of  mutualistic 

associations; furthermore, it allows us to avoid sampling low-density 

‘contaminant’ hyphae in the rhizoplane or spores simply present on 
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the  plant  roots  that  would  be  picked  up  by  extensive  next-

generation sequencing but are not forming functional AMF.   If we 

wished to sample the soil AMF community exhaustively then next-

generation  sequencing  or  DNA  metabarcoding  would  effectively 

allow this more in-depth examination of the community (e.g. Öpik et 

al. 2013).  

What is the functional importance of root symbiotic AMF diversity 

and what are all these fungi doing in the ecosystem?  For example, 

the mycorrhizal response to AMF inoculation in Eperua falcata is less 

than Dicorynia guianensis (de Grandcourt et al. 2004) and this may 

be influenced by this species' preference for nitrate (Schimann et al. 

2012)  mediated  by  root  exudate  influence  on  the  rhizosphere 

microbial  community  (Michalet  et  al.  2013).   If  AMF communities 

that have different functions (such as P-mining ability) are spatially 

separated  then  they  have  the  potential  to  influence  seedling 

diversity  in  tropical  forests  and  hence  contribute  to  the  high 

diversity of these ecosystems. 
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Table 1: trnL amplicon length predictions and measurements 
for three co-occurring legume trees at Nouragues in French 
Guiana.   The  sequence  accession  and  identity  used  for 
prediction is indicated in parentheses in the central column.
Species trnL length prediction Measurement 

range
Dicorynia 
guianensis

617 (FJ039291; Dicorynia 
guianensis)

616-618

Eperua 
falcata

706 (FJ039126; Eperua 
falcata)

704-705

Tachigali  
melinonii

578 (AF430790; Tachigali  
paniculata)

578-580

791

792

793

794

795



Table  2:  Soil  chemical  characteristics  (mean  ±  standard 
error) found around three co-occurring legume trees on two 
soil types (‘Grand Plateau’ and ‘Petit Plateau’) at Nouragues 
in French Guiana.  Significant differences (t-test,  p < 0.05) 
between  plateaus  are  marked  with  an  asterisk  and 
significant differences (Tukey’s test, p < 0.05) between tree 
species are noted with letters; absence of asterisk or stars 
indicates no significant differences.

Grand 
Plateau

Petit 
Plateau

Dicorynia 
guianensis

Eperua 
falcata

Tachigali  
melinonii

pH 4.39 ± 
0.10

4.26 ± 
0.06

4.28 ± 0.06 4.38 ± 0.26 4.36 ± 
0.10

C (%) 7.74 ± 
0.73

6.05 ± 
0.62

5.79 ± 0.53 
a

10.04 ± 
1.05 b

6.78 ± 
0.71 a

N (%) 0.56 ± 
0.03

* 0.39 ± 
0.03

0.38 ± 0.02 
a

0.64 ± 0.05 
b

0.52 ± 
0.04 b

Tot. P (μg g-1) 430 ± 33.5 * 104 ± 
9.2

124 ± 27 a 325 ± 55 ab 419 ± 58 b

Extr. P (μg g-1) 16.1 ± 2.6 12.6 ± 
2.1

10.3 ± 0.9 
a

25.4 ± 4.6 
b

13.9 ± 2.4 
a

Extr. K (μg g-1) 167 ± 15 * 105 ± 11 100 ± 8.0 a 204 ± 10.3 
b

149 ± 
18.0 a

Extr. Ca (μg g-1) 965 ± 322 * 384 ± 95 401 ± 105 1607 ± 896 598 ± 153
Extr. Mg (μg g-

1)
250 ± 37 175 ± 17 175 ± 19 a 324 ± 79 b 208 ± 32 

ab

796

797

798

799

800

801

802

803

804



Figure  1a:  Rarefaction  curves  and  1b:  frequency 
distributions of the DGGE bands of arbuscular mycorrhizal 
fungal  taxa  found  on  three  co-occurring  legume  trees  at 
Nouragues in French Guiana.
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Figure  2:  Venn diagram of  the DGGE bands  of  arbuscular 
mycorrhizal fungal taxa found on three co-occurring legume 
trees at Nouragues in French Guiana.
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Figure 3: Redundancy analysis of DGGE bands of arbuscular 
mycorrhizal fungal taxa on  three co-occurring legume trees 
at Nouragues in French Guiana constrained by soil nitrogen 
concentration.  Circles  (green)  =  Dicorynia  guianensis, 
triangles (blue) = Eperua falcata, Plus-signs (red) = Tachigali 
melinonii. 
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Figure 4: Phylogenetic tree (neighbour-joining) of arbuscular 
mycorrhizal  fungi  (Glomeromycota)  on  three  co-occurring 
legume trees at  Nouragues  in French Guiana.   Filled dots 
denote sequences derived from this  study,  open triangles 
denote  sequences  from  MaarjAM  including  Dicorynia 
guianensis and  Eperua falcata from Öpik et al. (2013) and 
open squares denote sequences from Genbank.   Numbers 
indicate  bootstrap  values  (>  50  %  shown;  100 
randomisations).
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Supplementary Figure: a) Roots of Dicorynia guianensis  in 
situ b) Roots of Eperua falcata c) Roots of Tachigali melinonii 
with spherical nodules.
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