626 research outputs found

    Cosmic Background dipole measurements with Planck-High Frequency Instrument

    Get PDF
    This paper discusses the Cosmic Background (CB) dipoles observations in the framework of the Planck mission. Dipoles observations can be used in three ways: (i) It gives a measurement of the peculiar velocity of our Galaxy which is an important observation in large scale structures formation model. (ii) Measuring the dipole can give unprecedent information on the monopole (that can be in some cases hard to obtain due to large foreground contaminations). (iii) The dipole can be an ideal absolute calibrator, easily detectable in cosmological experiments. Following the last two objectives, the main goal of the work presented here is twofold. First, we study the accuracy of the Planck-HFI calibration using the Cosmic Microwave Background (CMB) dipole measured by COBE as well as the Earth orbital motion dipole. We show that we can reach for HFI, a relative calibration between rings of about 1% and an absolute calibration better than 0.4% for the CMB channels (in the end, the absolute calibration will be limited by the uncertainties on the CMB temperature). We also show that Planck will be able to measure the CMB dipole direction at better than 1.7 arcmin and improve on the amplitude. Second, we investigate the detection of the Cosmic Far-Infrared Background (FIRB) dipole. Measuring this dipole could give a new and independent determination of the FIRB for which a direct determination is quite difficult due to Galactic dust emission contamination. We show that such a detection would require a Galactic dust emission removal at better than 1%, which will be very hard to achieve.Comment: 10 pages, 13 figures, submitted to A&A, uses aa.sty V5.

    On weak convergence of locally periodic functions

    Full text link
    We prove a generalization of the fact that periodic functions converge weakly to the mean value as the oscillation increases. Some convergence questions connected to locally periodic nonlinear boundary value problems are also considered.Comment: arxiv version is already officia

    The High Frequency Instrument of Planck: Requirements and Design

    Get PDF
    The Planck satellite is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. It is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. The detectors of its High frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. Due to the scanning on the sky, time features of the measurement chain are directly transformed into angular features in the sky maps. This impacts the bolometer design as well as other elements: For example, the cooling system must present outstanding temperature stability, and the amplification chain must show, down to very low frequencies, a flat noise spectrum

    Use of High Sensitivity Bolometers for Astronomy: Planck High Frequency Instrument

    Get PDF
    The Planck satellite is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. It is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. The detectors of its High Frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. This impacts the bolometer design as well as other elements: The cooling system must present outstanding temperature stability, and the amplification chain must show a flat noise spectrum down to very low frequencies

    Correctors for some nonlinear monotone operators

    Full text link
    In this paper we study homogenization of quasi-linear partial differential equations of the form -\mbox{div}\left( a\left( x,x/\varepsilon _h,Du_h\right) \right) =f_h on Ω\Omega with Dirichlet boundary conditions. Here the sequence (Δh)\left( \varepsilon _h\right) tends to 00 as h→∞h\rightarrow \infty and the map a(x,y,Ο)a\left( x,y,\xi \right) is periodic in y,y, monotone in Ο\xi and satisfies suitable continuity conditions. We prove that uh→uu_h\rightarrow u weakly in W01,p(Ω)W_0^{1,p}\left( \Omega \right) as h→∞,h\rightarrow \infty , where uu is the solution of a homogenized problem of the form -\mbox{div}\left( b\left( x,Du\right) \right) =f on Ω.\Omega . We also derive an explicit expression for the homogenized operator bb and prove some corrector results, i.e. we find (Ph)\left( P_h\right) such that Duh−Ph(Du)→0Du_h-P_h\left( Du\right) \rightarrow 0 in Lp(Ω,Rn)L^p\left( \Omega, \mathbf{R}^n\right)

    Some homogenization and corrector results for nonlinear monotone operators

    Full text link
    This paper deals with the limit behaviour of the solutions of quasi-linear equations of the form \ \ds -\limfunc{div}\left(a\left(x, x/{\varepsilon _h},Du_h\right)\right)=f_h on Ω\Omega with Dirichlet boundary conditions. The sequence (Δh)(\varepsilon _h) tends to 00 and the map a(x,y,Ο)a(x,y,\xi ) is periodic in yy, monotone in Ο\xi and satisfies suitable continuity conditions. It is proved that uh→uu_h\rightarrow u weakly in H01,2(Ω)H_0^{1,2}(\Omega ), where uu is the solution of a homogenized problem \ -\limfunc{div}(b(x,Du))=f on Ω\Omega . We also prove some corrector results, i.e. we find (Ph)(P_h) such that Duh−Ph(Du)→0Du_h-P_h(Du)\rightarrow 0 in L2(Ω,Rn)L^2(\Omega ,R^n)

    Monitoring and Data Analytics for Optical Networking:Benefits, Architectures, and Use Cases

    Get PDF
    Operators' network management continuously measures network health by collecting data from the deployed network devices; data is used mainly for performance reporting and diagnosing network problems after failures, as well as by human capacity planners to predict future traffic growth. Typically, these network management tools are generally reactive and require significant human effort and skills to operate effectively. As optical networks evolve to fulfil highly flexible connectivity and dynamicity requirements, and supporting ultra-low latency services, they must also provide reliable connectivity and increased network resource efficiency. Therefore, reactive human-based network measurement and management will be a limiting factor in the size and scale of these new networks. Future optical networks must support fully automated management, providing dynamic resource re-optimization to rapidly adapt network resources based on predicted conditions and events; identify service degradation conditions that will eventually impact connectivity and highlight critical devices and links for further inspection; and augment rapid protection schemes if a failure is predicted or detected, and facilitate resource optimization after restoration events. Applying automation techniques to network management requires both the collection of data from a variety of sources at various time frequencies, but it must also support the capability to extract knowledge and derive insight for performance monitoring, troubleshooting, and maintain network service continuity. Innovative analytics algorithms must be developed to derive meaningful input to the entities that orchestrate and control network resources; these control elements must also be capable of proactively programming the underlying optical infrastructure. In this article, we review the emerging requirements for optical network management automation, the capabilities of current optical systems, and the development and standardization status of data models and protocols to facilitate automated network monitoring. Finally, we propose an architecture to provide Monitoring and Data Analytics (MDA) capabilities, we present illustrative control loops for advanced network monitoring use cases, and the findings that validate the usefulness of MDA to provide automated optical network management

    COrE (Cosmic Origins Explorer) A White Paper

    Full text link
    COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than 3σ3\sigma for r=(T/S)>=10−3r=(T/S)>=10^{-3}. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added, minor errors corrected

    QUBIC: The QU Bolometric Interferometer for Cosmology

    Get PDF
    One of the major challenges of modern cosmology is the detection of B-mode polarization anisotropies in the CMB. These originate from tensor fluctuations of the metric produced during the inflationary phase. Their detection would therefore constitute a major step towards understanding the primordial Universe. The expected level of these anisotropies is however so small that it requires a new generation of instruments with high sensitivity and extremely good control of systematic effects. We propose the QUBIC instrument based on the novel concept of bolometric interferometry, bringing together the sensitivity advantages of bolometric detectors with the systematics effects advantages of interferometry. Methods: The instrument will directly observe the sky through an array of entry horns whose signals will be combined together using an optical combiner. The whole set-up is located inside a cryostat. Polarization modulation will be achieved using a rotating half-wave plate and interference fringes will be imaged on two focal planes (separated by a polarizing grid) tiled with bolometers. We show that QUBIC can be considered as a synthetic imager, exactly similar to a usual imager but with a synthesized beam formed by the array of entry horns. Scanning the sky provides an additional modulation of the signal and improve the sky coverage shape. The usual techniques of map-making and power spectrum estimation can then be applied. We show that the sensitivity of such an instrument is comparable with that of an imager with the same number of horns. We anticipate a low level of beam-related systematics thanks to the fact that the synthesized beam is determined by the location of the primary horns. Other systematics should be under good control thanks to an autocalibration technique, specific to our concept, that will permit the accurate determination of most of the systematics parameters.Comment: 12 pages, 10 figures, submitted to Astronomy and Astrophysic
    • 

    corecore