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Abstract—Network operators continuously measure network health by collecting data from the deployed network 

devices. This data is used mainly for performance reporting and diagnosing network problems after failures, the data 

may also be used by human capacity planners to predict future traffic growth. Typically, these network management 

tools are generally reactive and require significant human effort and skills to operate effectively. As optical networks 

evolve to fulfil highly flexible connectivity and dynamicity requirements, and supporting ultra-low latency services,  

they must also provide reliable connectivity and increased network resource efficiency. Therefore, reactive human-

based network measurement and management will be a limiting factor in the size and scale of these new networks. 

Future optical networks must support fully automated management, providing: i) dynamic resource re-optimization to 

rapidly adapt network resources based on predicted conditions and events; ii) identify service degradation conditions 

that will eventually impact connectivity and highlight critical devices and links for further inspection; and iii) augment 

rapid protection schemes if a failure is predicted or detected, and facilitate resource optimization after restoration 

events.   

 

Applying automation techniques to network management requires both the collection of data from a variety of sources 

at various time frequencies, but it must also support the capability to extract knowledge and derive insight for 

performance monitoring, troubleshooting, and maintain network service continuity. Innovative analytics algorithms 

must be developed to derive meaningful input to the entities that orchestrate and control network resources, these 

control elements must also be capable of proactively programming the underlying optical infrastructure. In this article, 

we review the emerging requirements for optical network management automation, the capabilities of current optical 

systems, and the development and standardization status of data models and protocols to facilitate automated network 

monitoring. Finally, we propose an architecture to provide Monitoring and Data Analytics (MDA) capabilities, we 

present illustrative control loops for advanced network monitoring use cases, and the findings that validate the 

usefulness of MDA to provide automated optical network management. 
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1 INTRODUCTION AND MOTIVATION 

After years of research and development, the Elastic Optical Networking (EON) technology is currently being 

deployed in optical transport networks. This technology enables among others: i) the capacity and / or increase the reach 

and reliability of optical connections (hereafter, lightpaths) and ii) a finer and dynamic spectrum allocation. The first is 

enabled by the joint usage of coherent detection, advanced Digital Signal Processing (DSP) techniques, novel 

modulation formats and soft-decision Forward Error Correction (FEC) codes to recover Bit Error Rate (BER) within the 

Optical Transponders (TP). The second is possible thanks to programmable Wavelength Selective Switches (WSS) and 

Reconfigurable Optical Add-Drop Multiplexers (ROADM). 

From a network control perspective, an enormous amount of research and standardization effort has been carried 

out, over the recent years, to implement the Software-Defined Networking (SDN) concept in optical networks [1]. SDN 

relies on the separation of the data plane and control plane, and leverages programmability and the usage of open 

interfaces. However, little to no attention has been paid to the operational loop (including monitoring, intelligence and 

management functionalities), relegating some of them into the Network Management Systems (NMS), and with limited 

practical operation capabilities. 
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Although EON and SDN technologies can fulfill current capacity and dynamicity requirements, transport networks 

are expected to support the deployment of upcoming 5G mobile infrastructures in the near future; 5G mobile will 

extend far beyond previous generations and require an enhanced quality of experience for the final users with new 

services and improved network performance. To meet the goals of 5G, network infrastructures should provide increased 

levels of flexibility and automation, together with higher priority given to network optimization, security, energy 

consumption, and cost efficiency. In fact, disaggregation at the optical layer has been conceived to enrich the offer of 

available solutions and to enable the deployment of optical nodes that better fit optical network operators’ needs. 

As future network complexity increases, the main challenge for operators will be to promptly respond to variable 

network conditions while ensuring full availability and optimization of network resources. Nonetheless, current optical 

networks are incorporating a complex ecosystem of devices and sensors, which will produce a large amount of data that 

can be exploited to optimize a network in real-time. To cope with complex and time-variable 5G service scenarios, 

Machine Learning (ML) – based algorithms [2] are being proposed to facilitate the network operation and predictive 

maintenance. ML algorithms, fed with real measurements, are able to accurately estimate the Quality of Transmission 

(QoT) of new lightpaths, to anticipate capacity exhaustion and degradations, or to predict and localize failures, among 

others (see, e.g., [3]-[8]). 

Based on the above facts, network operators are looking with high interest to the opportunities that Monitoring and 

Data Analytics (MDA) can offer to their optical transport networks, as it emerges from applied research and 

standardization bodies. In fact, such solutions can be made available only after monitoring and telemetry protocols, 

together with data models, are standardized. There are multiple ongoing standardization efforts within several 

technology areas, where most of the proposals are based on three main principles: i) data modeling language that 

provides structured data models for technology and function specific data points, ii) management protocol for encoding 

and carrying the data model information, and iii) the operational process governing how the protocol interface is used 

and connections are managed. In addition to research activity working on network telemetry (see, e.g., [9]), practical 

industrial projects exist, including: OpenConfig (see openconfig.net) and the OpenROADM (see openroadm.org) 

efforts. 

In this article, we review the operators’ vision, as well as the capabilities of current optical systems and present three 

wide-scope use cases that require MDA-based solutions and whose application will bring clear benefits: i) network 

planning and provisioning with reduced margins, ii) dynamic network adaptation, and iii) lightpath degradation 

detection and failure localization. Next, the state-of-the-art of data models and monitoring and telemetry protocols is 

reviewed as well. With this in mind, several MDA architectures are proposed, and the pros and cons of each of them are 

highlighted. Finally, illustrative control loops for the considered use cases bring a clear and complete vision of the 

validity and feasibility of MDA in the context of optical transport networks. 

2 OPERATORS’ VISION IN NEAR-TERM AND DATA AVAILABILITY  

2.1 The network operators’ vision 

The vision of network operators, regarding the deployment of MDA in their optical networks, mostly concentrates 

in three wide-scope use cases, as summarized in Table 1. 

The first use case focuses on minimizing the system operation margins, e.g., linear optical signal-to-noise-ratio 

(OSNR), that are widely used in optical systems to ensure worst-case end-of-life QoT of the lightpaths. Before entering 

operation, all available combinations of modulation formats, fiber types, FEC codes, etc. are considered, and exhaustive 

numerical simulations and lab experiments are conducted to extract engineering rules to be used. This time-consuming 

analysis can be simplified by utilizing approximate analytical tools such as the Gaussian Noise (GN) model [10]. Both 

approaches lead to the estimation of QoT for the existing lightpaths. Nonetheless, these solutions are static by nature 

and based on conservative design principles, which lead to resource underutilization.  

To reduce margins, analytical methods or ML-based algorithms can utilize the knowledge of the current network 

status, i.e., the configuration of optical devices (e.g., TPs, WSSs, ROADMs, etc.) and the characteristics of the optical 

fibers to estimate the QoT of new lightpaths to be established [3]. During operation, the SDN controller is in charge not 

only of the provisioning process, but also of adapting the network to traffic changes (it is quite common that packet 

traffic varies from day to night not only in intensity but also in directionality due to, e.g., data-centers activity) aiming at 

minimizing overprovisioning. In this second use case, the role of MDA is to derive models to accurately predict the 

traffic volume for the short term, in detecting whether the capacity of the lightpaths will be soon exhausted, etc. [4]. 

With such knowledge, the SDN controller can re-configure the network leveraging on the configurability of TPs, i.e., 



adapting the rate and spectrum, of already established lightpaths and creating new lightpaths in real time with 

significant CAPEX and OPEX savings. 

The last use case concentrates on degradations and failures. All components deployed into an optical network suffer 

ageing over their lifetime, e.g., the amplifiers might decrease their gain, the filters might insert additional losses, the 

fiber might present several splices, etc. This leads to a slow, but continuous, decrease of the lightpaths’ QoT. Early 

detection of lightpaths’ degradation would allow tuning parameters within the TPs, e.g., by increasing the FEC 

overhead or by switching to a more robust modulation format [5]. When the severity of the degradation increases, 

localizing its root cause is of paramount importance for maintenance purposes [6], [7]. It is also possible to predict 

failures and proactively re-route the traffic [8], which allows a high resiliency of the optical network at the just-enough 

cost. To this end, dedicated optical protection is replaced with just-in-time optical restoration. 

Table 1 Target use cases. 

Use case Description Expected Benefits Modeling and Parameters involved 

Network planning 

and provisioning 

with reduced 

margins 

Application of just 

enough margin in the 

network design and in 

lightpaths provisioning. 

CAPEX saving opportunity 

by avoiding or postponing 

unnecessary investments at a 

given time. 

Attenuation, dispersion and other fiber 

parameters, the noise figure of amplifiers, 

WSS passband, the sensitivity of TPs, etc. 

Those parameters can be used together 

with an analytical model to estimate the 

QoT of lightpaths accurately. 

ML-based methods to predict the 

probability that the QoT of a candidate 

lightpath will not exceed a defined 

threshold. 

Dynamic Network 

adaptation 

Leveraging on 

configurable TPs the 

allocation of just enough 

data rate for any 

connection at any time to 

cope with traffic 

dynamics at minutes or 

hours scale. 

Better exploitation of network 

resources and potential 

savings by reducing the 

typical overprovisioning of 

static allocation. 

Use of models to evaluate the expected 

QoT of a lightpath at any new TP 

configuration. 

Use of models for traffic analysis to 

evaluate traffic trends and periodicity. 

Lightpath 

Degradation and 

failure localization 

QoT reduces over time 

due to network and device 

degradation (e.g., fiber 

cuts and repairs), ageing, 

or load increasing. 

Degradation anticipation 

allows appropriately tune 

systems’ parameters before 

alarm triggering. 

Localizing the element 

responsible for a failure 

facilitates network 

maintenance by planning a 

human intervention. 

Predictive analysis based on QoT 

evolution. 

Localization based on the per-system 

analysis. Algorithms that find the 

potential cause of the failure. 

 

Four aspects are particularly important and must be implemented to support the three use cases described above: i) 

which data may be obtained, derived or provided by the network devices and collected by the operators, ii) which are 

the key parameters to be estimated and the accuracy required, iii) identification of technologies that can be used to 

elaborate the information, and finally, iv) definition of the main limitations in terms of data availability, veracity, and 

frequency that exist and what is needed to overcome them. 

2.2 Data availability 

Considering the use cases defined in Table 1, optical devices need to be capable of performing measurements on 

selected points of the networks, named Observation Points (OP). For example, measurements could be obtained from 

DSP units within the TPs, as well as from specific monitoring devices installed within the network. Specifically, DSPs 

can provide measurements or estimations of power levels, fiber channel characteristics (e.g., accumulated dispersion, 

fiber nonlinear coefficient, polarization mode dispersion) and QoT-related parameters (e.g., linear OSNR and BER). 

Furthermore, monitoring devices, like cost-effective optical spectrum analyzers (OSA) and optical time-domain 

reflectometer placed at predefined locations of the network, can provide specific measurements of optical signals and 

fiber segments. 



Among all available and derived data, the most relevant is the OSNR measured at the receiver, which is used to 

define the system margin of every lightpath. While the estimation in linear regime is straightforward, the GN model can 

provide a worst-case accuracy as low as ± 0.75 dB at the optimal power level or in the nonlinear regime. An accurate 

enough value of the system OSNR would enable strategies that can lead to optimal usage of the optical spectrum. ML-

based algorithms can also contribute to estimating this and other parameters, like laser characteristic or amplifier noise 

figure. 

It is clear that operational data (i.e., the network topology, the route of lightpaths, etc.) is of paramount importance 

to realize all above use cases, as they allow to correlate measurements and events; such operational data can be 

collected from the SDN controller. In addition, lightpath provisioning activity can also be collected from the SDN 

controller and used for traffic modeling. Other parameters can be available as well, like traffic forecasts that can be used 

to further optimize network operations or to predict failures. 

Finally, by deploying low-cost monitoring devices, environmental parameters could also be exploited and eventually 

correlated for optimal network operation. 

2.3 Considerations about MDA-based system 

Besides data availability, it is also important to consider their accuracy to define the sufficient amount of data to be 

collected and stored, as the accuracy depends on the amount of data that is considered in the MDA system for decision 

making. For example, if a system would operate in pure linear regime, the pre-FEC BER could be enough to estimate 

the actual OSNR and then the relative system margin. However, real networks do not always operate in a full linear 

regime, and therefore, the pre-FEC BER may result in being unsuitable to always provide an accurate prediction of the 

instantaneous OSNR margin. Consequently, enough data need to be stored to achieve a pre-defined accuracy, especially 

under low or zero-margin network operation. 

Another key factor is the update frequency; an instantaneous collection of monitoring data could produce negative 

effects, so it is important to determine the right frequency for data collection. For instance, once a lightpath is 

established, and until there are no substantial changes in the network, there is no need to update the fiber channel 

values. Contrarily, parameters such as amplifier power levels require a higher update frequency, although old values 

could be discarded if the individual amplifier works properly. Overall, all these data will be ultimately used by the 

MDA system, which might also incur in saturation or in drawing sub-optimal decision in case of overwhelming or 

contradictory data. 

Different strategies can be envisioned to solve this issue: i) using thresholds, which are simple but inaccurate; ii) 

experience and physical knowledge, which could lead to evaluation errors in case of not predicted scenarios; iii) by 

designing an intelligent MDA system that can decide based on physical conditions what data should be analyzed and 

consider possible dependencies. 

Finally, it is worth pointing out that the main challenge (and limitations) occur in multi-vendor scenarios. In this 

context, a proactive MDA system could anticipate issues before they happen and issue the proper recommendations 

provided that the MDA system is aware of the configuration of all involved nodes at any time. 

In conclusion, the opportunities that MDA opens go far beyond a monitoring data collector and storage platform. 

The analysis of the collected data can discover knowledge and use it to proactively self-configure and self-tune the 

network in a cost-effective (near) real-time manner by adapting resources to future conditions. Therefore, thanks to the 

application of data analytics to monitored data, observe-analyze-act control loops can be enabled, where outcomes of 

such analysis can be used for event notifications together with recommended actions to the SDN controller (Fig. 1). 

Last but not least, useful models can be estimated from monitoring data to feed planning tools in order to compute 

optimal solutions for the expected future conditions. 
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Fig. 1 Monitoring and Data Analytics enable observe-analyze-act control loop implementation. 

3 YANG DATA MODELS AND PROTOCOLS 

YANG is a data modeling language standardized by the Internet Engineering Task Force (IETF) and designed to 

operate with the NETCONF protocol for network configuration and management (see IETF RFC 6020). YANG 

enables: i) human readability and simplified troubleshooting operations compared to protocols relying on bit encoding; 

ii) hierarchical structures of data models; and iii) extensibility and modularity through augmentation mechanisms and 

sub-modules. A YANG data model is represented by a tree structure where nodes are defined by: names, data types, 

data values, or a set of child nodes and lists. In the last years, in the context of optical networks, YANG/NETCONF has 

emerged as a candidate solution to provide automated control of network elements having common and vendor-neutral 

standardized models [11]. Several standardization bodies, like the IETF, and working groups, e.g., the aforementioned 

OpenConfig and OpenROADM, have released vendor-neutral YANG models for devices as X-ponders, optical 

amplifiers, and ROADMs. However, the related YANG models are significantly different, with relevant incompatibility 

issues. Although efforts are on-going to converge towards commonly adopted models, multiple versions of drivers, 

software implementations and SDN controller and monitoring customizations are expected in the near future, 

potentially delaying the adoption in heterogeneous and multi-vendor networking scenarios. 

For monitoring purposes, YANG relies on state (read-only) types providing the actual values of the considered 

system parameters. The SDN controller is able to retrieve YANG-defined parameter values by exploiting NETCONF 

messages either periodically (e.g., every 15 minutes) or asynchronously (e.g., in case of events) through notification 

messages. However, NETCONF messages are not particularly efficient for monitoring (especially when the data 

collection period is short, e.g., one minute) let alone for telemetry (e.g., when a continuous stream of data is provided). 

Thus, other protocols have been proposed for monitoring and telemetry purposes; the most relevant are: i) IP Flow 

Information eXport (IPFIX) (see IETF RFC 3917), ii) gRPC (see grpc.io), and iii) Apache Thrift (see thrift.apache.org); 

see a brief description in Table 2. 

Table 2 Monitoring and Telemetry protocols. 

Protocol Description Data types Scalability and performance 

IPFIX   IPFIX was developed in IETF for 

typical IP networks applications. 

 It works in push mode and supports 

a many-to-many relationship 

between OPs and MDA collectors. 

 The structure of IPFIX protocol 

messages is based on templates 

that enable to export any type of 

data. 

 Scalability is considered in 

the design of the protocol, 

with a requirement of 

hundreds of different 

exporting processes to be 

supported.  

gRPC   gRPC uses by default Protocol 

Buffers, a mechanism for serializing 

structured data. 

 It supports data streaming based on 

 Specific data structures can be 

defined; a compiler can generate 

source code in various 

programming languages, 

 gRPC is carried over HTTP/2 

and leverages on effective 

binary framing and header 

compression that improve 



a request/response model. representing the data, and 

methods to serialize them. 

data transfer efficiency. 

Thrift   Apache Thrift is an open source 

software library and set of code-

generation tools.  

 Thrift is stream-oriented by design. 

 It allows the definition of 

datatypes and generates all the 

necessary code in different 

programming languages. 

 Data transfer efficiency is 

comparable to that of gRPC. 

 

With these protocols available, the selection of the collection period is not limited to 15 minutes anymore, and it can 

be reduced to, e.g., 1 second [9]. Note that the shorter the collection period, the shorter the event that can be detected, as 

well as the shorter the time to detect degradations. However, reducing the measurement period increases the amount of 

data that has to be collected, stored, and analyzed. Then, an approach to reduce the amount of data is to rely on 

monitoring using collection period of minutes and activate telemetry on demand to get insight, by analyzing a 

continuous stream of measurements, when and where needed. 

4 MDA ARCHITECTURES 

In this section, we present and analyze several architectural approaches to bring real MDA capabilities to the 

network (see Fig. 2). Specifically, three architectures are considered depending on where data analytic capabilities are 

enabled, namely: i) centralized, ii) distributed, and iii) hierarchical. 
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Fig. 2 Overview of the centralized (a), distributed (b), and hierarchical (c) MDA architectures. 

The centralized architecture (Fig. 2a) consists in detaching the monitoring repository and the data analytics system, 

if any, from the NMS to create a separate specific centralized MDA controller that can interface the SDN controller and 

other systems within the control plane (see, e.g., Ciena Blue Planet). To keep the MDA architecture simple, let us 

consider that its only mission is to expose an interface to collect monitoring and telemetry data from the network 

devices. Measurements are stored in a (big data) repository, and data analytics algorithms can be devised to discover 

knowledge to be used to predict and/or to detect anomalies and degradations before they negatively impact on the 

network performance. Such predicted events can be notified to the SDN controller together and include a recommended 

action to guide the SDN controller; the recommended action is a suggestion that the SDN controller can follow or 

ignore and apply its own policies. As an example, in some cases BER degradation can be predicted ahead of time in a 

lightpath before any threshold is exceeded by analyzing the BER evolution as measured at the receiver; this is notified 

to the SDN controller together with a recommended action after analyzing several alternatives, including change of the 

modulation format (also via probabilistic shaping), re-route of the lightpath (e.g., to avoid some links); or also to 

increase, if possible, the amount of overhead used by the FEC. The notification to the SDN controller might trigger a re-

configuration, hence closing the loop and adapting the network to the new conditions. 

The centralized MDA architecture presents some limitations; for instance, the time to detect an anomaly or 

degradation is related to the update frequency. Therefore, to reduce the detection times, the amount of data to be 

conveyed to the MDA controller needs to be increased accordingly. Another issue is related to the control of 

monitoring; specifically, to activate telemetry on-demand once an event has been detected. 



To overcome these problems, the distributed architecture (Fig. 2b) includes MDA agents in charge of collecting 

measurements from a single node, while keeping the MDA controller centralized [13]-[14]. The MDA agent exposes 

two unified interfaces toward the MDA controller for collecting data and monitoring configuration; in addition, specific 

interfaces for data collection and monitoring control allow the MDA agent connecting with the network device. The 

data analytics capabilities deployed close to the network nodes enable local control loops implementation; 

measurements can be analyzed locally, and configuration can be tuned and adapted to changing conditions. However, 

the co-existence of two controllers, the SDN and the MDA, in charge of configuring network devices, might create 

conflicts, so it would be desirable to clearly separate responsibilities among them. 

The distributed architecture includes a dedicated MDA agent for every node in the network, which might present 

some limitations when disaggregated optical network nodes (e.g., TPs and ROADMs) and monitoring devices are 

deployed within the same central office (CO) [14]. For this reason, the hierarchical architecture (Fig. 2c) includes a 

per-CO MDA agent that collects measurements from every network device in the CO and exposes a single set of 

interfaces toward the MDA controller. In this case, measurements from one device can be analyzed in the CO MDA 

agent and configuration can be tuned to another device within the same CO, thus minimizing the intervention of the 

MDA controller. The per-CO MDA agent could (or not) replace every node MDA agent thus, reducing systems count. 

The strengths and weaknesses of the analyzed MDA architectures are summarized in Table 3, where the features of 

each architecture include those of the previous. 

Table 3 Strengths and weaknesses of several monitoring and data analytics architectures. 

Architecture Features Strengths Weaknesses 

Centralized  Includes a centralized MDA 

system with a data repository 

for monitoring/telemetry data 

where data analytics can be 

applied. 

 Monitoring and telemetry 

activation and deactivation is 

managed by an external 

system, e.g., the NMS. 

 Data analytics results can be used 

for network self-adaptation to 

changing conditions. 

 Interfaces with the SDN controller 

and NFV orchestrator can be 

easily standardized. 

 Different monitoring / telemetry 

protocols need to be available at 

the MDA controller. 

 The amount of data to be collated 

from the nodes increases 

exponentially to keep low reaction 

times against anomalies or 

degradations. 

 Configuration tuning is not 

supported. 

 Network slicing is difficult to be 

supported. 

Distributed  Allows data analytics to be 

applied within the MDA 

agents, close to the network 

nodes. Control loops can be 

implemented locally at the 

node level. 

 Monitoring and telemetry 

activation / deactivation is 

managed by the MDA 

controller. 

 Supports configuration tuning 

[12]. 

 It reduces data to be conveyed to 

the MDA controller since patter 

recognition can be done in the 

MDA agents. 

 MDA agents expose one single 

monitoring and telemetry interface 

to the MDA controller. 

 Supports network slicing [13]. 

 A configuration interface needs to 

be defined between the MDA 

controller and the agents. 

 More complex MDA controller as 

more features are added, like 

monitoring and telemetry control, 

and configuration tuning. 

 CO control loops are not 

supported. 

Hierarchical  It includes a per-CO MDA 

agent that connects to all the 

nodes in the CO. 

 Control loops can be implemented 

locally at the node, as well as at 

the CO level involving more than 

one node. 

 Appropriate for node 

disaggregation scenarios, where 

monitoring devices can be 

installed in one node, but 

configuration tuning needs to be 

done in a different node [14]. 

 It reduces the total number of 

agents and the number of 

interfaces toward the MDA 

controller. 

 Requires more complex MDA 

agents to consider complex 

relations among nodes. 



5 ILLUSTRATIVE CONTROL LOOP IMPLEMENTATION 

This section illustrates how the use cases introduced in Section 2.1 can be implemented. To this end, let us assume a 

disaggregated scenario, where COs are equipped with TP nodes and ROADMs and the hierarchical MDA architecture is 

selected. Apart from the MDA, the control plane includes an SDN controller in charge of configuring the optical 

network, a planning tool running optimization algorithms for provisioning and in-operation network planning purposes 

[15], and an NMS for human operators to manage the network. 

Additionally, it is worth highlighting that if external systems, such as planning tools, may require access to data 

stored in the MDA controller upon request, it is necessary to define additional interfaces.  The data that is then 

available, as part of the MDA, is not simply the raw measurements being streamed from the network devices, but also 

estimated data and derived knowledge generated by ML algorithms. 

5.1 Lightpath provisioning with a reduced margin 

In this first use case, we focus on the provisioning of lightpaths minimizing the system margin, which can be 

derived from the OSNR and / or the TP’s pre-FEC BER threshold according to the transmission scenario. OSNR 

estimation at optimal lunch power and in nonlinear regime requires data from monitoring the optical channel and the 

devices configuration, which we assume that are already available in the MDA controller (labeled 0 in Fig. 3a). Besides 

this information, also parameters related to network infrastructures (such as fiber types and link lengths) are required. 

These might be collected, e.g., from the SDN controller, the NMS and inventory systems. 
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Fig. 3 Control loops implementation: Lightpath provisioning with reduced margin (a), dynamic network adaptation (b), and lightpath 

degradation detection and modulation format adaptation (c). 

When a lightpath set-up request arrives at the SDN controller (1), the latter relies on the planning tool for the 

computation of the route, spectrum allocation, modulation format and other parameters that contribute to minimize the 



system margin while guaranteeing its QoT (2). In order to compute an optimal solution and meet the objective function 

criterion, the planning tool needs to access data from the MDA controller (3); once a solution has been found, it is sent 

back to the SDN controller (4). Here, (at least) three possibilities might exist: i) the lightpath can be established, and an 

optimal configuration has been found; ii) the lightpath can be established provided that the configuration of other 

lightpaths is first changed, and iii) no solution has been found. In the second case, the planning tool returns the optimal 

configuration found for the requested lightpath, together with a (reactive) recommended action for the SDN controller 

to modify the configuration of a subset of already established lightpaths; in this case, the SDN controller might request 

the human operator to confirm the re-configuration through the NMS (5). Finally, in the case that the lightpath can be 

established with or without network re-configuration, the SDN controller configures the network devices accordingly. 

Further optimization can then be achieved by observing the QoT of each established lightpath, aiming at identifying 

possible transmission adaptions (e.g., FEC, modulation format) leading to margin reductions closer to the predefined 

target values. 

5.2 Dynamic network adaptation 

In the previous control loop, the planning tool issued a recommended action for re-configuration because of a 

previous request from the SDN controller (we named them reactive). In this and the next use cases, the MDA controller 

will issue recommendations to the SDN controller as a result of observing what is happening in the network and aiming 

at anticipating the most relevant events. In this context, we refer them to as proactive recommendations. 

As for the case before, we assume that data are already available within the MDA controller (labeled 0 in Fig. 3b). 

ML algorithms running in the MDA controller can use the measured packet traffic volume to determine a traffic model 

for the traffic between every origin and destination CO. Such traffic models can be used to compare the expected traffic 

against the provisioned capacity and therefore, when the measured or the expected traffic for the near future is close to 

the allocated capacity, the MDA controller issues a notification to the SDN controller including a recommended action 

to reconfigure the allocated capacity (1). 

In these dynamic cases, the SDN controller might inform the human operator through the NMS (2) and then, request 

the planning tool to compute the optimal capacity configuration for the detected event (3). For such computation, the 

planning tool needs data from the MDA controller, e.g., the expected traffic matrix, e.g., for the next hours (4) [4]. Such 

traffic matrix can be computed assuming the maximum or the 95th percentile traffic volume expected for every origin-

destination pair. With such a traffic matrix, an optimization algorithm running in the planning tool can compute the 

optical capacity allocation and respond to the SDN controller (5). Finally, the SDN controller implements the re-

configuration in the network (6). 

5.3 Lightpath degradation detection and modulation format adaptation 

For this use case, let us consider the lightpath is established and being monitored, where BER measurements are 

collected by the MDA agents connected to the end TPs (labeled 0 in Fig. 3c). A data analytics algorithm running within 

the MDA agents can be in charge of detecting BER trends to anticipate QoT degradation [5]. In the case of QoT 

degradation detection, a decision can be locally made without the intervention of the MDA controller. For instance, 

modern TPs are capable of identifying the modulation format of the received signal by means of DSP. Therefore, a 

change in the modulation format employed for a lightpath can be initiated in one of the transmitters and the end TPs 

will automatically realize of such change and carry out the same in the opposite direction (such local control loop is not 

shown in Fig. 3c). However, in disaggregated multi-vendor scenarios, both ends could need to be simultaneously re-

configured. To that end, the MDA agent sends a notification to the MDA controller (1) that evaluates the capabilities of 

both TPs and evaluates the possibilities. The degradation detection together with a recommendation (e.g., change the 

modulation format to a more robust one) is sent to the SDN controller (3) that implements it in the devices, might be 

after checking it with the operator in the NMS (3-4). 

6 SUMMARY 

We have provided the network operator vision for automating management of advanced optical network 

infrastructure, key requirements and current enabling optical technologies.   

For this article the role of MDA in optical networking has been studied through three wide-scope use cases covering 

the main network operations: i) network planning and provisioning, ii) dynamic network adaptation, and iii) degradation 

detection and failure localization, where clear benefits have been unveiled. Interestingly, current networking devices are 

already capable of performing measurements that support those use cases. Additional data can be collected by installing 

specific monitoring devices at predefined locations. 



A review of the currently ongoing standardization activities revealed that different initiatives are working towards 

modeling optical components and adopting different solutions. In addition, several protocols can be used for monitoring 

and telemetry purposes. From the control plane perspective, it is not clear the support of SDN controllers to the MDA 

functions more than just collecting monitoring data. In view of that, a specific MDA system has been proposed and 

three different architectures, from centralized to distributed, were analyzed, where an MDA controller is defined in the 

control plane working together with the SDN controller. Finally, illustrative control loops supporting examples of the 

selected use cases have been shown. 

As a final remark, although the technologies supporting MDA in optical networks are ready, there is still a 

significant amount of discussion required within the relevant standardization forums and industrial OpenSource 

projects, to leverage this work fully. 
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