1,735 research outputs found

    Quantum Plasmonics

    Get PDF
    Quantum plasmonics is an exciting subbranch of nanoplasmonics where the laws of quantum theory are used to describe light–matter interactions on the nanoscale. Plasmonic materials allow extreme subdiffraction confinement of (quantum or classical) light to regions so small that the quantization of both light and matter may be necessary for an accurate description. State-of-the-art experiments now allow us to probe these regimes and push existing theories to the limits which opens up the possibilities of exploring the nature of many-body collective oscillations as well as developing new plasmonic devices, which use the particle quality of light and the wave quality of matter, and have a wealth of potential applications in sensing, lasing, and quantum computing. This merging of fundamental condensed matter theory with application-rich electromagnetism (and a splash of quantum optics thrown in) gives rise to a fascinating area of modern physics that is still very much in its infancy. In this review, we discuss and compare the key models and experiments used to explore how the quantum nature of electrons impacts plasmonics in the context of quantum size corrections of localized plasmons and quantum tunneling between nanoparticle dimers. We also look at some of the remarkable experiments that are revealing the quantum nature of surface plasmon polaritons

    Evaluation of bacteriological diagnosis of smear positive pulmonary tubreculosis under programme conditions in three districts in the context of DOTS implementation in India

    Get PDF
    Objective: To study the smear and culture positivity rates in pulmonary tuberculosis patients declared as smear positive in the districts of North Arcot (Tamil Nadu), Raichur (Karnataka) and Wardha (Maharashtra) in India in order to evaluate the diagnosis of pulmonary tuberculosis at the field level under programme conditions. Methods: Two specimens of sputum from each of 320 patients in North Arcot, 314 patients in Raichur and 302 patients from Wardha district, all of whom had been reported as smear-positive at the field level, were examined by smear and culture. Findings: The proportion of specimens found to be smear-negative was 4.7% in North Arcot and 5.7% in Raichur as against 38.7% in Wardha. The proportions of culture negative specimens were 5.7% and 6.3% respectively in North Arcot and Raichur, while it was 35.6% at Wardha. The difference in the smear and culture negativity between Wardha and the other two districts was highly significant. Conclusions: The study revealed an unacceptably high level of false positives in sputum smear microscopy in the Wardha district. This could be attributed to the absence of systematic and intensive training in smear examination consequent to the non-implementation of the DOTS strategy in this district and a high standard of training offered in the RNTCP implemented districts

    Properties and occurrence rates of KeplerKepler exoplanet candidates as a function of host star metallicity from the DR25 catalog

    Get PDF
    Correlations between the occurrence rate of exoplanets and their host star properties provide important clues about the planet formation processes. We studied the dependence of the observed properties of exoplanets (radius, mass, and orbital period) as a function of their host star metallicity. We analyzed the planetary radii and orbital periods of over 2800 KeplerKepler candidates from the latest KeplerKepler data release DR25 (Q1-Q17) with revised planetary radii based on GaiaGaia~DR2 as a function of host star metallicity (from the Q1-Q17 (DR25) stellar and planet catalog). With a much larger sample and improved radius measurements, we are able to reconfirm previous results in the literature. We show that the average metallicity of the host star increases as the radius of the planet increases. We demonstrate this by first calculating the average host star metallicity for different radius bins and then supplementing these results by calculating the occurrence rate as a function of planetary radius and host star metallicity. We find a similar trend between host star metallicity and planet mass: the average host star metallicity increases with increasing planet mass. This trend, however, reverses for masses >4.0MJ> 4.0\, M_\mathrm{J}: host star metallicity drops with increasing planetary mass. We further examined the correlation between the host star metallicity and the orbital period of the planet. We find that for planets with orbital periods less than 10 days, the average metallicity of the host star is higher than that for planets with periods greater than 10 days.Comment: 14 pages, 13 Figures, Accepted for publication in The Astronomical Journa

    Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS.

    Get PDF
    Reactive astrocytes influence post-injury recovery, repair, and pathogenesis of the mammalian CNS. Much of the regulation of astrocyte reactivity, however, remains to be understood. Using genetic loss and gain-of-function analyses in vivo, we show that the conserved MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) promotes astrocyte reactivity and glial scar formation after CNS injury. Inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activators pSTAT3 and SOX9. The identification of LZK as a critical cell-intrinsic regulator of astrocyte reactivity expands our understanding of the multicellular response to CNS injury and disease, with broad translational implications for neural repair

    In silico evolution of diauxic growth

    Get PDF
    The glucose effect is a well known phenomenon whereby cells, when presented with two different nutrients, show a diauxic growth pattern, i.e. an episode of exponential growth followed by a lag phase of reduced growth followed by a second phase of exponential growth. Diauxic growth is usually thought of as a an adaptation to maximise biomass production in an environment offering two or more carbon sources. While diauxic growth has been studied widely both experimentally and theoretically, the hypothesis that diauxic growth is a strategy to increase overall growth has remained an unconfirmed conjecture. Here, we present a minimal mathematical model of a bacterial nutrient uptake system and metabolism. We subject this model to artificial evolution to test under which conditions diauxic growth evolves. As a result, we find that, indeed, sequential uptake of nutrients emerges if there is competition for nutrients and the metabolism/uptake system is capacity limited. However, we also find that diauxic growth is a secondary effect of this system and that the speed-up of nutrient uptake is a much larger effect. Notably, this speed-up of nutrient uptake coincides with an overall reduction of efficiency. Our two main conclusions are: (i) Cells competing for the same nutrients evolve rapid but inefficient growth dynamics. (ii) In the deterministic models we use here no substantial lag-phase evolves. This suggests that the lag-phase is a consequence of stochastic gene expression

    Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour

    Get PDF
    The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and-unexpectedly-lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractant

    Family-led rehabilitation after stroke in India (ATTEND): a randomised controlled trial

    Get PDF
    Background: Most people with stroke in India have no access to organised rehabilitation services. The effectiveness of training family members to provide stroke rehabilitation is uncertain. Our primary objective was to determine whether family-led stroke rehabilitation, initiated in hospital and continued at home, would be superior to usual care in a low-resource setting. Methods: The Family-led Rehabilitation after Stroke in India (ATTEND) trial was a prospectively randomised open trial with blinded endpoint done across 14 hospitals in India. Patients aged 18 years or older who had had a stroke within the past month, had residual disability and reasonable expectation of survival, and who had an informal family-nominated caregiver were randomly assigned to intervention or usual care by site coordinators using a secure web-based system with minimisation by site and stroke severity. The family members of participants in the intervention group received additional structured rehabilitation training—including information provision, joint goal setting, carer training, and task-specific training—that was started in hospital and continued at home for up to 2 months. The primary outcome was death or dependency at 6 months, defined by scores 3–6 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) as assessed by masked observers. Analyses were by intention to treat. This trial is registered with Clinical Trials Registry-India (CTRI/2013/04/003557), Australian New Zealand Clinical Trials Registry (ACTRN12613000078752), and Universal Trial Number (U1111-1138-6707). Findings: Between Jan 13, 2014, and Feb 12, 2016, 1250 patients were randomly assigned to intervention (n=623) or control (n=627) groups. 33 patients were lost to follow-up (14 intervention, 19 control) and five patients withdrew (two intervention, three control). At 6 months, 285 (47%) of 607 patients in the intervention group and 287 (47%) of 605 controls were dead or dependent (odds ratio 0·98, 95% CI 0·78–1·23, p=0·87). 72 (12%) patients in the intervention group and 86 (14%) in the control group died (p=0·27), and we observed no difference in rehospitalisation (89 [14%]patients in the intervention group vs 82 [13%] in the control group; p=0·56). We also found no difference in total non-fatal events (112 events in 82 [13%] intervention patients vs 110 events in 79 [13%] control patients; p=0·80). Interpretation: Although task shifting is an attractive solution for health-care sustainability, our results do not support investment in new stroke rehabilitation services that shift tasks to family caregivers, unless new evidence emerges. A future avenue of research should be to investigate the effects of task shifting to health-care assistants or team-based community care. Funding: The National Health and Medical Research Council of Australia
    corecore