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Abstract

The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described
mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell
movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are
made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin
polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to
predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a
computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a
surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence
without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of
pseudopod position in low chemoattractant gradients and—unexpectedly—lateral pseudopod initiation in high gradients.
To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is
that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between
the cell’s direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing
Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and
data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the
heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod
behaviour, more than generation of new pseudopods or actin polymerization by chemoattractants.
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Introduction

Eukaryotic chemotaxis—cell migration towards a source of

attractants—is both biologically important and theoretically

interesting, so it has been widely studied. Recently, a majority of

authors have considered that chemotaxis is driven by a ‘‘compass’’

[1]. The exact meaning of the compass varies. When originally

defined [2], it implied that there is a simple ‘‘compass needle’’

inside the cell, which is a localised signal that represents the

direction of the chemoattractant gradient (Figure 1A). If the

hypothetical compass needle points in a different direction from

the cell’s current direction, it causes new pseudopods to be made

towards attractant sources, thus steering the cell. More recent

compass-based models consider the noisy environment in which

chemoattractants are sensed, allowing the compass to bias (rather

than specify) the positions of new pseudopods. A number of

relatives of compass models (including the LEGI models from the

Iglesias and Devreotes groups [3], the balanced inactivation model

of Levine [4], and inositide-based models such as Narang [5])

share one property—they focus on information processing, at the

level of receptor occupancy and immediately below, giving the cell

a simplified and amplified internal message that determines the

position and direction of future pseudopods. In these models the

cytoskeleton mostly plays a blue-collar role, responding to the

instructions from the internal compass.

However, we [6–8] and others [9–11] have found that simple

generation of new pseudopods cannot explain observed cell

steering and that, unless gradients are very steep, new pseudopods

are usually more strongly controlled by internal dynamics than by

chemoattractants. We have therefore proposed a ‘‘pseudopod-

centred’’ mechanism (Figure 1A) [12], in which there is no

requirement for a compass or other internal messenger represent-

ing direction. Rather, each cell’s direction is entirely represented

by the pseudopods themselves. We have demonstrated that new

pseudopods are mainly generated by bifurcation and evolution of

existing ones [6,7]. In a variety of cell types, close to 90% of new

pseudopods are generated when existing pseudopods split to form

two daughters. This severely limits the place and time at which

pseudopods can emerge. We find that directional migration is

accomplished by biasing the cycle of pseudopod generation and

retraction, at any of several steps, rather than simply at the level of

new pseudopod initiation. These include selecting the best of
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multiple pseudopods generated by random splitting [6] and

biasing the position at which new pseudopods emerge [7]. Several

other lines of data support this mechanism. For example, new

pseudopods on average steer the cell away from the attractant—

which disagrees with compass models in which the aggregate effect

of new pseudopods is to steer the cell towards the source.

An alternative, groundbreaking way of addressing the same

issues uses a ‘‘local coupling’’ model (Figure 1A) [13]. Here the

leading edge is restricted to a proportion of the cell and grows by

small increments. As with our pseudopod-centred model, che-

moattractants bias an internal process and there is no need for

signal processing. However, this model has two disadvantages. It is

limited to cells like neutrophils with broad, stable leading edges

that turn without generating or retracting pseudopods, and thus

does not deal well with cells like Dictyostelium or macrophages.

Similarly, the process that restricts the pseudopod size and

prevents actin polymerization at the sides is central to the model,

whereas in many cell types actin may polymerize at any part of the

cell [14]. In this work we therefore addressed the pseudopod-

centred model as a potential broad or universal model for

chemotaxis.

Results

A Pseudopod-Centred Computational Model
We tested the predictive abilities of pseudopod-centred

mechanisms using a conceptually simple computational model,

based on coupled feedback loops (Figure 2A). Feedback is

fundamental to chemotaxis [15] and underpins both compass-

and pseudopod-centred mechanisms but used in different ways. In

compass models, feedback is typically invoked during signal

processing, to amplify and simplify the noisy and complex

information from receptors [16–18]. We have predicted that such

signal processing is not essential [12,19]. Rather, in our model

feedback loops are used to define the pseudopods themselves.

Positive feedback allows pseudopods to maintain themselves and to

grow, while negative feedback fulfils two roles—firstly, it restricts

the growth of existing pseudopods and the initiation of new ones at

other parts of the cell, and secondly, it makes pseudopods

dynamic, allowing cells to change shape and direction as occurs in

amoeboid movement. To model chemotaxis, we therefore adapted

an established system (Figure 1B) [20] based on a single pseudopod

activator regulated by three feedback loops, one positive and two

negative (Figure 1B). In the Meinhardt article [20], the cell does

not move—the components of the feedback loop were localised, in

a dynamically evolving pattern, within a static cell perimeter. To

allow our simulated cell to move (Figure 1C), we have used an

evolving surface finite element method [21], in which each point of

the perimeter moves outwards normal to the edge of the cell [22],

at a rate proportional to the local activator level. Protrusion is

counteracted by a curvature-based contraction, in which the edge

is retracted so that the cell tends towards a constant area. The

different parts of the cell retract in proportion to their steepness of

curvature; this effectively simulates cortical tension, which retracts

highly curved areas and thus causes the cell to tend towards a

circle. A level set method was used to evolve the cell perimeter.

These methods are based on an Eulerian description of a level set

function, where the location of the zero level set identifies the cell

perimeter [23]. This framework confers many well-known

computational advantages, including use of fixed Cartesian meshes

and straightforward implementation of high resolution numerical

schemes [24]. Full details of the computational methods are given

in a separate publication [25].

Importantly, movement of the leading edge greatly changes the

evolution of the activator levels, because areas where the level of

pseudopod activator is high tend to expand, diluting the activator.

Evolution of the edge therefore mimics the local inhibitor, in a way

that might make possible a future model with only two further

feedback loops, one positive and one negative.

Physiological Correlates
The centre of our model is a pseudopod activator whose level

correlates with the rate of movement of the leading edge. One

biologically appropriate equivalent is actin nucleation driven by

the Arp2/3 complex, which is a central driver of actin-based

movement. However, the components of the model are not

intended to directly represent defined molecular species. This is for

two reasons. Firstly, the regulation of the actin cytoskeleton is not

understood in the quantitative detail needed to generate a defined

model. Key components have not been defined or cannot be

measured (for example, the affinity of activated Rac for the

SCAR/WAVE complex), and multiple factors such as VASP may

modulate the rate of actin-based protrusion. Secondly, actin-based

motility is frequently regulated by multiple parallel components, so

removing individual pathways such as SCAR/WAVE, Rac, or PI

3-kinase does not block migration, despite the clear importance of

each of these pathways. Molecule-based models have been

successful and informative about individual pathways and the

roles of single proteins [26–29], but the dynamic morphology of

chemotactic cells has proven too complex for such an approach.

Our approach is more similar to those successfully used by the

Wang, Theriot, and Mogilner labs based initially on cell shape

[30] and mechanics [31]. While the activator is directly related to

the level of actin nucleation or polymerization, we envisage the

local inhibitor corresponding to depletion of required substrates

(for example, Arp2/3 complex, activation-competent SCAR/

WAVE) and the global inhibitor corresponding to physical

processes such as mechanical tension. The positive feedback loop

driving pseudopod growth could act at multiple levels, including

through Rac [32], SCAR/WAVE [10], or actin itself [33]; all

Author Summary

The efficiency, sensitivity, and huge dynamic range of
eukaryotic cell chemotaxis have proven very hard to
explain. Cells respond to shallow gradients of chemotactic
molecules with directed movement, but the mechanisms
remain elusive. Most current models predict that cells have
an internal ‘‘compass’’ produced by processing the
extracellular signal into an intracellular mechanism that
points the cell towards the gradient and steers it in that
direction. In this article, we present evidence that this
internal compass does not exist; instead, the cell orients
itself simply by making use of its pseudopods—the
dynamic finger-like projections on the surface of the cell.
We approached the question by making a computational
model of the movement of a cell without a compass. In
this model, the cell moves in a convincingly natural way
simply by using its pseudopods, which respond to
positive- and negative-feedback loops. The concentration
of the chemoattractant molecule modulates the amount of
positive feedback. Apart from this, no signal processing is
necessary. This simple model reproduces many observa-
tions about normal chemotaxis. It also accurately predicts
the angle at which new pseudopods split off from old
ones, which had not been previously measured. The
computational model thus demonstrates that pseudopod-
based mechanisms are powerful enough to explain
chemotaxis.

Pseudopod-Centred Model of Chemotaxis
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three have been described and probably act concurrently in real

cells, though we envisage the first two as being more influential.

Again, however, the aim of this model is to test the predictive

power of pseudopod-centred models, rather than the roles of

particular pathways.

Modelling Random Migration
The results from this simulation (Movie S1 and Figure 3A–C)

make several clear points. Firstly, cells polarize into a front and a

rear without needing additional internal signals (Figure 3A). This

polarization is seen as an essential part of efficient migration

and chemotaxis [17]. Secondly, the simulated cells’ migration is

persistent—they maintain their direction over several pseudopod

cycles (Movie S1 and Figure 3B). Persistence has also

been measured in most migrating cells and is thought to be

important for chemotaxis [34,35]. Thirdly, new pseudopods are

mostly made by bifurcation of the leading edge (Figure 3C;

compare with Dictyostelium cell in Figure 3D). Bifurcation

Figure 1. Comparison of different mechanisms. (A) Comparison of the underlying ideas behind different mechanisms that have been proposed
to explain chemotaxis. Compass and LEGI mechanisms emphasize signal processing to determine the correct site for pseudopod generation (the
‘‘compass needle’’); the local coupling mechanism restricts protrusion to a leading edge and uses the attractant to bias the growth of different parts
of the leading edge; the pseudopod-centred mechanism emphasises the endogenous, autocatalytic growth of pseudopods and allows the
unprocessed gradient information to bias multiple points in the cycle. (B) The pseudopod cycle and pseudopod-centred mechanisms. In the
traditional signal-centred view, the cell forms an internal representation of the gradient (the compass) that directs the formation of new pseudopods.
The compass can only affect the process at one point. Pseudopod-centred views hold that the generation and evolution of pseudopods is driven by
cyclical internal processes, and when present chemoattractants bias multiple different steps in the cycle.
doi:10.1371/journal.pbio.1000618.g001

Pseudopod-Centred Model of Chemotaxis
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(‘‘pseudopod splitting’’) was initially described by Andrew [6] and

has since been observed in multiple types of migratory cells

[36], including mouse embryonic fibroblasts, human dendritic

cells, and cultured neurites. In the measured cell types, the

proportion of pseudopods generated by splitting is usually around

90% [6].

Analysis of the positions of pseudopods as they evolve over time

also gives a wavelike pattern (Figure 3E), like that measured in real

unstimulated cells [9]. Furthermore, the paths taken by individual

cells are remarkably similar between the simulation and real cells

(Figure 3F), and both display characteristics of a persistent random

walk [37]. The simple model based on Meinhardt [20] therefore

successfully describes a typical unstimulated cell.

Modelling Chemotaxis
To generate a pseudopod-centred model of the response to

chemoattractant, we departed from the Meinhardt model [20],

which relies on hidden signal processing to provide a fully localised

signal (see Methods). In our system, the magnitude of the positive

feedback is directly correlated with the local chemoattractant

Figure 2. Pseudopod-centred computational model for chemotaxis. (A) Topology of feedback loops. Each pseudopod is driven by a local
activator peak (A), which in turn stimulates production of global and local inhibitors (B and C). Coupled expansion of the pseudopods and contraction
of the rear also imposes geometric change that can act as an inhibitor by diluting A levels where peaks are expanding. (B) Equations (adapted from
Meinhardt [20]). Activator and inhibitor levels change through diffusion, synthesis, and breakdown terms, respectively. The signal is composed of two
terms, one representing autocatalysis and the other related to receptor occupancy, each with its own a noise component. (C) Mechanics of model
movement. The cell is modelled as a path defined by finite element nodes. The activator and inhibitor levels change according to equations (1)–(4).
To move the cell, each element of the perimeter is moved in the outward-normal direction with a velocity that is proportional to the local activator
level at that point. Retractions are governed by the local mean curvature of the cell and allow the cell to maintain a roughly constant area over time.
The new perimeter—now with unequally spaced nodes—is passed to the level set toolbox to maintain perimeter integrity.
doi:10.1371/journal.pbio.1000618.g002

Pseudopod-Centred Model of Chemotaxis
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receptor occupancy (Figure 2B, equation 4), with additional

elements corresponding to noisy signal perception and activator

feedback. This provides a key difference between our model (and

pseudopod-centred models in general) and most work in the

chemotaxis field. In our model, neither actin polymerization nor

pseudopod generation is caused by extracellular signals. Rather,

the signals are only able to modulate the rates of internal processes.

In shallow gradients, internal processes overwhelmingly dominate.

When this connection to external signalling is added and a

moderate chemoattractant gradient (from 5.3 nM to 6.5 nM

Figure 3. Simulation of random migration without stimulus. (A–D) Initial polarization (A), persistence of migration (B), and pseudopod
bifurcation (C) during random migration, compared with DIC images of real migrating Dictyostelium cells (D). Black shows cell perimeter; green shows
local levels of pseudopod activator; blue shows cell centroid track. (E) Travelling wave patterns in simulated cell perimeters. Perimeters from
successive frames were unwrapped from polar to Cartesian (compare with Killich et al. [9]). x-axis shows the position on the perimeter, y-axis shows
the evolution over time, and the colour map indicates the activator level as defined by the adjacent colour profile (with black corresponding to a low
activator level, and bright green corresponding to a high activator level). (F) Tracks of several simulated cells (left) compared with real cells (data from
[8]). The grey circle indicates the mean dispersal.
doi:10.1371/journal.pbio.1000618.g003

Pseudopod-Centred Model of Chemotaxis
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across the cell) is applied, the simulated cell moves very similarly to

a real Dictyostelium in a similar gradient (Movie S1; Figures 4A,B).

This close resemblance to real cells is surprising, given a number of

disagreements with generally accepted points.

Firstly, as previously stated there is no direct connection

between the external signal and protrusion, pseudopod generation,

or actin polymerization. The receptor occupancy only modulates

the positive feedback that maintains the leading pseudopod.

Secondly, there is no signal processing—each point on the cell’s

surface is modulated by the local attractant concentration, without

reference to points elsewhere in the cell.

Thirdly, receptor adaptation is not required for effective

chemotaxis up a static attractant gradient, even at fairly high

receptor occupancy, as long as there is a significant difference in

the proportion of occupied receptors across the cell. Parts of the

edge that lack pseudopods do not gain them when the overall

occupancy increases, because positive feedback of the activator is

negligible when activator levels are near zero. For adaptation to be

dispensable contradicts most current opinion but is supported by

several articles, including those showing non-adaptation of

movement to high stimuli [38] and lack of adaptation at the G-

protein level as measured by FRET [39]. Adaptation at some

levels occurs biologically and is required for conditions such as

chemotaxis towards sources of biological waves. It was nonetheless

surprising that the model would support simple chemotaxis up a

linear gradient without adaptation.

The basic motile behaviour of the cell is not fundamentally

changed by the chemoattractant. As observed in real cells

chemotaxing in moderate gradients [6] but in disagreement with

many compass-based explanations for chemotaxis, the rate of

pseudopod generation and orientation of new pseudopods are only

slightly changed by the chemoattractant.

As the steepness of the attractant gradient applied to the model

increases, the accuracy of chemotaxis increases, exactly as seen in

real cells (Figure 4C). More surprisingly, however, with steep

gradients the model undergoes a qualitative change that precisely

resembles real cells. While in low gradients cells nearly always turn

from the front, by biasing the behaviour of leading pseudopods, in

high gradients they frequently generate a new pseudopod directly

towards the attractant source [40]. The model replicates this

behaviour (Movie S2; Figure 4D), which was unexpected because

we had believed it to be driven by an alternative mechanism. This

suggests that pseudopod-centred models can account for the

mainstream data supporting signal-induced pseudopods, given

steep enough gradients.

When chemotactic cells are presented with a sudden, global

change in attractant levels, they respond in a well-defined way.

First actin polymerizes all around the cell perimeter, then the cell

rounds up as the new F-actin is depolymerized—the ‘‘cringe’’

response [41]—which is followed by repolarization, formation of

new pseudopods, and a second peak of actin polymerization

(Movie S3). Because this behaviour is consistent and tractable it

has been widely used as an assay for chemotactic signal

transduction, and the second peak in F-actin in particular has

been attributed to a downstream response to PI 3-kinase activation

[41]. When the computational model was subjected to a similar

sudden increase in receptor occupancy, with the addition of an

exponential decay function representing adaptation, the perimeter

behaved in a similar fashion to the experimental observations

(Movie S4; Figure 4E). Activator levels—corresponding to

polymerization of actin filaments—rose rapidly, and modelled

cells rounded up, followed shortly afterwards by a drop in activator

levels as the inhibitors responded. The time for cells to recover is

defined by the rate of adaptation, not by the feedback loops.

Strikingly, however, a second complex activator peak occurred

that strongly resembles the second experimentally observed F-

actin peak (Figure 4F).

This provides an alternative mechanistic explanation for the

generation of multiple F-actin peaks. Instead of two pathways with

different signal propagation times, as previously predicted [41], the

multiple peaks in the model are caused by damped oscillation of a

single pathway following a sudden displacement. In this explana-

tion, mutants that mostly lack a second F-actin peak [42] do so

because of inefficient positive feedback at the pseudopod level, not

separate signalling pathways with different dynamics.

Two further observations support the appropriateness of the

pseudopod-centred computational model. Firstly, movement and

chemotaxis are relatively robust. The parameters we use (Table

S1) are mainly taken directly from Meinhardt [20] and did not

need optimization to produce biologically plausible behaviour.

Two-fold changes in most of the parameters make only minor,

quantitative differences to the behaviour of the simulated cells

(Figure S1); indeed many of the single changes shown appear to

make chemotaxis more efficient than in our standard conditions.

Interestingly, the parameters that were most sensitive to alteration

concerned the production of the local inhibitor; changes in the

production or decay rates bc and rc resulted in either slower

migration or repeated movements that are inconsistent with

random migration. Raising the diffusion coefficient of the activator

(Da) caused similar problems with repetition, but these could be

compensated by corresponding rises in the diffusion coefficient of

the local inhibitor (Dc). Secondly, the model handles noise very

effectively. Even when the contribution of noise is far greater than

the signal from a shallow gradient, chemotaxis is efficient; in

shallow gradients, chemotaxis is most efficient over a substantial

background of noise (Figure S2). Robustness and tolerance to noise

are central to chemotaxis in real cells [43].

Mechanisms Underlying Eukaryotic Chemotaxis
In compass models of chemotaxis, cells first identify the

direction of the attractant gradient, then generate new pseudopods

if the cell’s direction needs correcting [2]. However recent work

suggests that pseudopods do not steer cells this way in shallow

gradients. Instead at least two mechanisms act concurrently, both

Figure 4. Chemotaxis of simulated cells in shallow and steep gradients. (A) Frames showing a simulated cell reorienting as a
chemoattractant gradient is applied. (B) Superimposition of consecutive frames showing reorientation of cell after the chemoattractant source was
moved (after frame 7). Compare with Figure 4a from ref. [3]. (C) Tracks of several different simulated cells, corresponding to initial gradients of 5.3 nM
– 5.5, 5.7, 6.1, and 6.6 nM across the cell. As with real cells the accuracy increases as the gradient steepens. In each case the chemoattractant gradient
is first applied at t = 0. (D) Reorientation by de novo pseudopods in a steep gradient. Frames taken from Movie S2, corresponding to a receptor
occupancy from 0% to 20% across the cell. (E, F) ‘‘Cringe’’ response to sudden, global increase in chemoattractant concentration from zero to full
receptor occupancy. An exponential decay, simulating receptor adaptation, was added to the signal function. (E) shows frames from Movie S4,
revealing sequentially an unstimulated cell (green box), global actin polymerization following global stimulation (red box), rounding with bleblike
protrusions, and finally recovery and repolarization. A similar cringe response in a real Dictyostelium cell transfected with GFP-lifeact (from Movie S4)
and viewed in a confocal microscope is shown below. (F) shows the aggregate activator for a single cell perimeter versus time—compare with the
actin curve in [43].
doi:10.1371/journal.pbio.1000618.g004

Pseudopod-Centred Model of Chemotaxis
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Figure 5. Mechanisms that drive eukaryotic chemotaxis. (A, B) Pseudopod selection from simulated cells (A) and real cells (B; data from [6]).
Grey bars represent the total number of pseudopods made in each direction; green bars represent pseudopods that go on to split; red bars represent
pseudopods that are retracted without further splitting. (C, D) Signal-driven bias of pseudopod orientation in simulated (D) and real (E) cells (from [7]).
Stimulus at +90u causes pseudopods on the same and opposite sides of cell to reorient slightly towards the attractant source. (E, F, G) Bias of
pseudopod angle by stimuli from different orientations. (E) shows a schematic showing the angle of the attractant relative to the current pseudopod
(a) and the angle of the next pseudopod relative to the current pseudopod (c). (F) Relationship between a and c in simulated cells; (G) relationship

Pseudopod-Centred Model of Chemotaxis
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based on the tendency of new pseudopods to be made by

bifurcation of existing ones. In the first, new pseudopods are made

without requiring external guidance, but cells preferentially retain

ones that point in the correct direction [6]. In the second, new

pseudopods are generated in stereotypical directions by bifurca-

tion, but their orientation is biased by the direction of the gradient,

leading to accurate steering after a number of slight turns [7]. Both

mechanisms act concurrently in real cells, though either would be

sufficient for chemotaxis alone. We therefore examined the

steering of simulated cells to determine whether each of these

mechanisms was used.

As discussed previously, our computational model generates

new protrusions, by bifurcating existing ones, and retracts others

[6]. For the analysis of pseudopod selection, we simulated

migration in a moderate gradient (initially 5.3–6.6 nM across a

cell; shallower gradients give similar but less emphatic results). The

point at which each pseudopod splits was identified using a peak

detection algorithm, and the daughters followed until one was

retracted. We then measured the initial angle of each new

pseudopod relative to the direction of the attractant gradient.

Figure 5A shows that the simulated cells use selection like real cells

(see Figure 5B, data from [6] Figure 3A)—new pseudopods that

are pointing well away from the correct direction are nearly always

retracted, while pseudopods that point up-gradient are more likely

to be retained. The pseudopod selection mechanism is therefore

operating for simulated cells as in live cells.

The only obvious difference between the simulated and real

data is in the distribution of new pseudopod directions—the

‘‘rabbit ears’’ in the real cells are caused by unequal bifurcation in

which the smaller pseudopod points off to one side. Simulated cells

bifurcate symmetrically, and thus the distribution of new

pseudopods is more even.

The second measured pseudopod-centred mechanism of

chemotaxis is directional bias. During bifurcation, new pseudo-

pods can only be generated in a narrow range of angles either side

of the parent. However, the mean orientation of new pseudopods

is biased slightly towards the attractant source [7]. This makes the

path qualitatively similar in the presence or absence of an

attractant, but biases accumulate over time and steer the cell. To

test whether our simulated cells used this mechanism, we

repeatedly reoriented the stimulus as the cell turned (Movie S5).

This caused the cell to move in circles. Figure 5C shows that

pseudopod bias in the modelled cells is similar to the experimen-

tally measured bias (Figure 5D, replotted from [7]). The mean

position of new pseudopods was biased about 15u towards the

stimulus. Note that (as in real cells) pseudopods are biased whether

they steer the cell towards or away from the stimulus, emphasising

that the timing and general location of pseudopod production are

not altered by the stimulus. Rather, in both simulation and reality,

cell-autonomous processes control the rate and general site at

which pseudopods are made and the general area they emerge,

and chemoattractant signalling fine-tunes this behaviour.

For a more detailed analysis of how bifurcations are affected by

the attractant gradient, we simulated inaccurate migration in

shallow gradients and counted a large number of bifurcations. We

then measured the angle between the dominant pseudopods

before and after the split (schematic, Figure 5E). In simulations run

with zero external stimulus, the mean change in the absence of

signal is about 55u. We then measured how this angle varied for

cells migrating at different angles relative to the attractant

gradient. When simulated cells were moving towards the

attractant source, the mean change dropped (Figure 5F) to about

30u; as the angle between cell and attractant gradient increased,

the mean angle between successive dominant pseudopods also

increased by a ratio of about 1u of pseudopod per 3u of additional

orientation away from the chemoattractant. At 70u between the

gradient and the new pseudopod, the mean angle between

successive dominant pseudopods was not altered. Thus the model

predicts that the pseudopod split angle is smoothly biased by the

attractant direction, in a way that partially compensates for the

tendency of new pseudopods to direct the cell away from the

attractant and which will steer the cell towards the attractant

source over a number of turns.

To compare the simulations with real cells, we examined the

data generated by quantitation of movies of cells turning in shallow

gradients (Figure 5G; new data, extracted from the same data set

as examined in [7]). Again, the correlation between simulated and

real data is surprisingly good. Our model thus predicts new data as

effectively as it recreates the multiple known features of migration

and chemotaxis described previously.

Discussion

Biological Correlates
As discussed earlier, we used an undefined model because the

large number of incompletely defined pathways makes them

require multiple biologically improbable presumptions. Further-

more, many pathways that were thought essential turn out to be

dispensable for chemotaxis [44,45]. However, all of the compo-

nents required to drive the simulation have physiological

equivalents. As discussed earlier, the core activating term

corresponds to actin activation, most likely through the Arp2/3

complex. At least three positive feedback loops of the type we use

have been described—direct autocatalysis of actin, actin polymer-

ization generating templates for Arp2/3 complex activation, and

actin activation of PI 3-kinase.

Conclusions
Our pseudopod-centred mechanism efficiently couples gradient

sensation to migration, overcoming a long-term problem with

chemotaxis models [46]. The similarity between the behaviour of

modelled and real cells is astounding, especially given the

conceptual simplicity of the model and the robustness of the

model to changes in parameters. Two apparently separate

mechanisms of chemotaxis—pseudopod selection and orientation

bias—both emerge from the same simple model, and the complex

patterns of actin polymerization and depolymerization following

sudden stimuli are also clearly observed without multiple signalling

pathways. This emphasises that much of the described complex

behaviour of cells is likely to be an emergent property derived from

relatively simple pathways.

This implies that future understanding of chemotaxis will

require a change in experimental approach. Current research

often focuses on how external signals are amplified and processed,

and separately on pathways that initiate new actin and new

pseudopods. The success of our pseudopod-centred model suggests

that a greater emphasis on the physiological mechanisms of

between a and c in real cells. Pseudopods made clockwise relative to the previous one are shown in blue, and those made anti-clockwise are shown
in green. Dashed red lines represent the positions of pseudopods in the absence of a signal (horizontal) and the angle of attractant that does not alter
the pseudopod split-angle (vertical). Black line and equations show line of best fit.
doi:10.1371/journal.pbio.1000618.g005
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pseudopod evolution, and how chemoattractants modulate them,

will yield greater fundamental insight.

Methods

Numerical Methods
A complete description of the numerical methods used is far

beyond the scope of this article and is fully presented in reference

[25]. In brief, equations (1)–(3) in Figure 2B are approximated on

the evolving cell perimeter using an Arbitrary Lagrangian Eulerian

surface finite element method using piecewise linear elements.

Time integration is achieved using a semi-implicit approach. The

computed activator profile is used to drive a mechanical model of

the protrusive and retractive forces exerted on the cell membrane.

Movement of the cell is obtained using a level set method and a

moving Cartesian mesh. Calculations are performed using the

level set toolbox in MATLAB [24].

The fourth equation in Figure 2B, defining the signal, is

different from Meinhardt’s [20]. In the original Meinhardt model,

the location on the cell membrane with the highest receptor

occupancy is used—without specification of how it is computed—

to centre an assumed sinusoidal variation of the external signal.

That model, unlike ours, therefore bypasses a key question in

chemotaxis. Instead we relate the signal to the local proportional

receptor occupancy, with additional random terms representing

noise in the pseudopod system and in the receptor signalling

system.

Cell Methods
The cells in Figure 3D are Dictyostelium AX3 cells, developed

for 4 h and imaged exactly as described in [6]. For fluorescence

microscopy, similar cells were transfected with an extrachromo-

somal vector expressing GFP-lifeact and imaged using an

Olympus confocal microscope with a 6061.4 NA objective.

Pseudopod angles were measured using Quimp3 [8] from the

same dataset that was used in [7].

Supporting Information

Figure S1 Robustness of the model. Chemotaxis up a moderate

gradient (approximately 5.3 nM to 6.5 nM across the cell) was

simulated 10 times. For each parameter in turn, simulations were

run at the base value and with the parameter either halved or

doubled. In most cases, the chemotactic ability of cells was not

qualitatively affected. In a few cases (e.g., doubling of bc or Da) the

simulations decayed into repetitious changes that did not allow cell

movement.

Found at: doi:10.1371/journal.pbio.1000618.s001 (0.62 MB PDF)

Figure S2 Effects of noise on chemotaxis. Tracks of several

different simulated cells, corresponding to the gradients shown.

The accuracy increases as the gradient steepens but is also optimal

at intermediate or even high noise levels.

Found at: doi:10.1371/journal.pbio.1000618.s002 (0.71 MB PDF)

Movie S1 Random migration of simulated cells in the absence of

attractant followed by moderate attractant gradient. Evolution and

migration of the simulated cell from an initially symmetrical state

is followed at the indicated time by a gradient from 0 (bottom) to

16 nM (top) across the field.

Found at: doi:10.1371/journal.pbio.1000618.s003 (1.70 MB

MOV)

Movie S2 Chemotaxis to steep attractant gradients. Gradient

represents occupancy change from 0% to 20% across the cell.

Found at: doi:10.1371/journal.pbio.1000618.s004 (0.94 MB

MOV)

Movie S3 ‘‘Cringe’’ response to sudden, homogenous rise in

attractant concentration. Dictyostelium cells transfected with GFP-

lifeact were allowed to migrate randomly without stimulus, then

cAMP was suddenly and globally added, causing a sudden

redistribution of actin to the cell perimeter.

Found at: doi:10.1371/journal.pbio.1000618.s005 (2.18 MB

MOV)

Movie S4 ‘‘Cringe’’ response in real cells. Modelling the

response shown experimentally in Movie S3. Receptors were

suddenly and globally upshifted from zero to complete occupancy,

using an exponential decay function to simulate adaptation.

Background shows arrival and decay of perceived stimulus.

Found at: doi:10.1371/journal.pbio.1000618.s006 (1.73 MB

MOV)

Movie S5 Chemotaxis to a constantly repositioned gradient.

Simulated cells were allowed to chemotax to a gradient initially set

from 5.3 nM to 7.0 nM across the cell. To maintain a lateral bias,

every 200 frames the stimulus was reoriented to +90u from the

current direction as indicated by the green wedge.

Found at: doi:10.1371/journal.pbio.1000618.s007 (2.35 MB

M )

Table S1 Parameters used. The parameters were mostly taken

directly from [20], with a small number of changes needed to

counteract the diluting effect of the perimeter expanding at the

leading edge.

Found at: doi:10.1371/journal.pbio.1000618.s008 (PDF)
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