22,133 research outputs found
Efficiency in the use of a computer for network analysis
Efficiency in use of digital computer for network analysi
Graphical method for analyzing digital computer efficiency
Analysis method utilizes graph-theoretic approach for evaluating computation cost and makes logical distinction between linear graph of a computation and linear graph of a program. It applies equally well to other processes which depend on quatitative edge nomenclature and precedence relationships between edges
A topological approach to computer-aided sensitivity analysis
Sensitivities of any arbitrary system are calculated using general purpose digital computer with available software packages for transfer function analysis. Sensitivity shows how element variation within system affects system performance. Signal flow graph illustrates topological system behavior and relationship among parameters in system
The influence of microlensing on the shape of the AGN Fe K-alpha line
We study the influence of gravitational microlensing on the AGN Fe K-alpha
line confirming that unexpected enhancements recently detected in the iron line
of some AGNs can be produced by this effect. We use a ray tracing method to
study the influence of microlensing in the emission coming from a compact
accretion disc considering both geometries, Schwarzschild and Kerr.
Thanks to the small dimensions of the region producing the AGN Fe K-alpha
line, the Einstein Ring Radii associated to even very small compact objects
have size comparable to the accretion disc hence producing noticeable changes
in the line profiles. Asymmetrical enhancements contributing differently to the
peaks or to the core of the line are produced by a microlens, off-centered with
respect to the accretion disc.
In the standard configuration of microlensing by a compact object in an
intervening galaxy, we found that the effects on the iron line are two orders
of magnitude larger than those expected in the optical or UV emission lines. In
particular, microlensing can satisfactorily explain the excess in the iron line
emission found very recently in two gravitational lens systems, H 1413+117 and
MG J0414+0534.
Exploring other physical {scenario} for microlensing, we found that compact
objects (of the order of one Solar mass) which belong to {the bulge or the
halo} of the host galaxy can also produce significant changes in the Fe
K line profile of an AGN. However, the optical depth estimated for
this type of microlensing is {very small, , even in a favorable
case.Comment: Astron. Astrophys. accepte
Assessing the influence of the carbon oxidation-reduction state on organic pollutant biodegradation in algal-bacterial photobioreactors
The influence of the carbon oxidation-reduction state (CORS) of organic pollutants on their biodegradation in enclosed algal-bacterial photobioreactors was evaluated using a consortium of enriched wild-type methanotrophic bacteria and microalgae. Methane, methanol and glucose (with CORS -4, -2 and 0, respectively) were chosen as model organic pollutants. In the absence of external oxygen supply, microalgal photosynthesis was not capable of supporting a significant methane and methanol biodegradation due to their high oxygen demands per carbon unit, while glucose was fully oxidized by photosynthetic oxygenation. When bicarbonate was added, removal efficiencies of 37¿±¿4% (20 days), 65¿±¿4% (11 days) and 100% (2 days) were recorded for CH(4,) CH(3)OH and C(6)H(12)O(6), respectively due to the additional oxygen generated from photosynthetic bicarbonate assimilation. The use of NO(3)(-) instead of NH(4)(+) as nitrogen source (N oxidation-reduction state of +5 vs. -3) resulted in an increase in CH(4) degradation from 0 to 33¿±¿3% in the absence of bicarbonate and from 37¿±¿4% to 100% in the presence of bicarbonate, likely due to a decrease in the stoichiometric oxygen requirements and the higher photosynthetic oxygen production. Hypothetically, the CORS of the substrates might affect the CORS of the microalgal biomass composition (higher lipid content). However, the total lipid content of the algal-bacterial biomass was 19¿±¿7% in the absence and 16¿±¿2% in the presence of bicarbonat
Determinants of Loyalty in Business Banking
The aim of this study is to investigate and compare the main determinants of Banking Loyalty for
Business Banking customers in an offline and online environment. The results showed that the major
driver of Banking Loyalty in an offline environment is Perceived Service Quality. Satisfaction and
Image overlap the last construct and business customers do not perceive Switching Costs. In an online
context E-Banking Service Quality affects E-Banking Loyalty, E-Satisfaction and Image overlap the
last construct, E-Banking Service Quality has a strong impact on E-Trust and Perceived Switching Costs
has a strong impact on E-Banking Loyalty.info:eu-repo/semantics/draf
Moduli spaces of coherent systems of small slope on algebraic curves
Let be an algebraic curve of genus . A coherent system on
consists of a pair , where is an algebraic vector bundle over of
rank and degree and is a subspace of dimension of the space of
sections of . The stability of the coherent system depends on a parameter
. We study the geometry of the moduli space of coherent systems for
. We show that these spaces are irreducible whenever they are
non-empty and obtain necessary and sufficient conditions for non-emptiness.Comment: 27 pages; minor presentational changes and typographical correction
Bilayer graphene under pressure: Electron-hole Symmetry Breaking, Valley Hall Effect, and Landau Levels
The electronic structure of bilayer graphene under pressure develops very
interesting features with an enhancement of the trigonal warping and a
splitting of the parabolic touching bands at the K point of the reciprocal
space into four Dirac cones, one at K and three along the T symmetry lines. As
pressure is increased, these cones separate in reciprocal space and in energy,
breaking the electron-hole symmetry. Due to their energy separation, their
opposite Berry curvature can be observed in valley Hall effect experiments and
in the structure of the Landau levels. Based on the electronic structure
obtained by Density Functional Theory, we develop a low energy Hamiltonian that
describes the effects of pressure on measurable quantities such as the Hall
conductivity and the Landau levels of the system.Comment: 11 pages, 9 figure
Effect of silicon carbide particle size on microstructure and properties of a coating layer on steel produced by TIG technique
Recommended from our members
Numerical Model for the Determination of Erythrocyte Mechanical Properties and Wall Shear Stress in vivo From Intravital Microscopy.
The mechanical properties and deformability of Red Blood Cells (RBCs) are important determinants of blood rheology and microvascular hemodynamics. The objective of this study is to quantify the mechanical properties and wall shear stress experienced by the RBC membrane during capillary plug flow in vivo utilizing high speed video recording from intravital microscopy, biomechanical modeling, and computational methods. Capillaries were imaged in the rat cremaster muscle pre- and post-RBC transfusion of stored RBCs for 2-weeks. RBC membrane contours were extracted utilizing image processing and parametrized. RBC parameterizations were used to determine updated deformation gradient and Lagrangian Green strain tensors for each point along the parametrization and for each frame during plug flow. The updated Lagrangian Green strain and Displacement Gradient tensors were numerically fit to the Navier-Lame equations along the parameterized boundary to determined Lame's constants. Mechanical properties and wall shear stress were determined before and transfusion, were grouped in three populations of erythrocytes: native cells (NC) or circulating cells before transfusion, and two distinct population of cells after transfusion with stored cells (SC1 and SC2). The distinction, between the heterogeneous populations of cells present after the transfusion, SC1 and SC2, was obtained through principle component analysis (PCA) of the mechanical properties along the membrane. Cells with the first two principle components within 3 standard deviations of the mean, were labeled as SC1, and those with the first two principle components greater than 3 standard deviations from the mean were labeled as SC2. The calculated shear modulus average was 1.1±0.2, 0.90±0.15, and 12 ± 8 MPa for NC, SC1, and SC2, respectively. The calculated young's modulus average was 3.3±0.6, 2.6±0.4, and 32±20 MPa for NC, SC1, and SC2, respectively. o our knowledge, the methods presented here are the first estimation of the erythrocyte mechanical properties and shear stress in vivo during capillary plug flow. In summary, the methods introduced in this study may provide a new avenue of investigation of erythrocyte mechanics in the context of hematologic conditions that adversely affect erythrocyte mechanical properties
- …
