
4 c

E3FI;'ICIENCY IN THE USE OF A

ROBERT M. MU??OZ

Ames Research Center

Moffet-1; Field, Cal i forn ia

S. PARK CilATJ

Universi ty of Sarlta Clara

Santa C l a m , .Cal i fornia

1T;STRODUCTI OIT

- - v u ,
I 2 - I

J %cause t h e computer i s Seing used e f f e c t i v e l y i n many f i e l d s ,
e s p e c i a l l y i n t h e f i e l d s of c i r c u i t and system d.esign, a r e a l motivation
e x i s t s f o r eff ic iencx. Many software packages such as SEPTRE:, ECAP, and
NET 1 have proven t h e point t h a t c i r c u i t and system design engineering
can be e f l e c t l v e l y aided by i n t e l l i g e n t 'us'e of t h e computer and t h i s
use i s l imi ted not only by amilab1.e computing equipment bu-t a l s o by
methods of computing, methods which vary widely i n e f f ic iency . Elect-
ronl.cs c i r c u i t a n a l y s i s programs of today a r e very sophis t ica ted and
capable of analyzing l a r g e networks. They veiy o f t e n requi re memory
capaci ty and computing t imes t h a t t a x t h e resources of a sm11 computing
i n s t a l l a t i o n . The use of such programs represents a cos t t h a t can be
measured 5y a number of f a c t o r s including computing t i m e and memory
capaci ty and t h i s cos t must be compared with t h e b e n e f i t derived.
programs a r e l e s s c o s t l y than others when p e r f o m i n g t h e same a n a l y s i s
funct ion and some programs a r e d e f i n i t e l y unsui ted t o p e r f o r x h g c e r t a i q
computations, not because t h e y lack t h e capabi l i ty , but 'because t h e
cos t of doing these computations i s too great .

Some

3 i . s 7aper has been wr i t ten i n an attempt t o discuss t h e problem

-'ilk cost of a coaputation as measured by t h e t ime necessary for
of ef f lc lency of computation i n t h e d i g i t a l computer i n a conceptual.
way.
perfo:'xLng t n e required opera-tions and t h e memory capacity or other
hard.c.r;l cz rqti;.remcn-ts. i s t rea ted . A method of a n a l y s i s u t i l i z i n g t h e
graph zheGi-etical approach f o r eval.uating t h e c o s t of computation i s
introduced, This method is new i n s o f a r as it makes a l o g i c a l d i s t lnc- t ion
between The l i n e a r graph of a computation and t h e 1:inear graph of a pro-
gram an6 shows i n g e n e r a l i t y the importance of t h e r e l a t i o n s h i p s between,
dhese l-,i.~o gi-aph models without going into any grea t depth t o descri-be
t h e algebra of t h e s e re la t ionships ,
s t r u c t u r e such as c y c l i c operations and v a r i a t i o n s i n t h e types of
opemt:i.ons such as determinis t ic or probabi l . is t ic a r e discussed. The ..,

optimization problem i s vieyed as it r e l a t e s t o t h e assj.gnnent of
p r i o r i t i e s among processors i n a multiprocessing hardware configuration.

-.

A number of dist3.nctions i n graph

"This work WCLS supported i n part by t h e National Aeronautics and Spcce
Administration G r s i i t No. NGR--05-017-012.

b

https://ntrs.nasa.gov/search.jsp?R=19680020047 2020-03-12T09:49:11+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/85244192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

~- Elements of t he Cost of Coniputation

I -

.

The fundamental and p re requ i s i t e cos t s of doing e l e c t r o n i c c i r c u i t
’

ana lys i s and design by means of a d i g i t a l computer i s t h a t cos t assoc ia ted
with the a c q u i s i t i o n of a co!npui;er of computing service; however, t h i s
acquis i - t ion or ren-ta.1 cos t oi“ ha.rdr!are w i l l not be discussed here . I n
t h i s paper, it w i l l be assumed t h a t d i g i t a l computing equ-ipmnent i s a v a i l -
ab l e and a motive t o m k e e f f i c i e n t use of t h i s equipment e x i s t s . Tne
more important elements of the cost of conipu-ting depend upon (1) computing
time, (2) computer capaci ty and (3) computer e r r o r p robab i l i t y .

The computatlional t a s k usual ly begins with programming. Once the
programming elffort. i s competed and. infnrInat.ion for p o g r a m input. i s
presented i n some acceptable form t o the computer, a s e r i e s of events
t akes p lace which cons t i t u t e the more important time i n t e r v a l s i n t h e
computing process.
by t h e compu-ter and can be hj,d;en up i i i to t h e fol lowing genera l ca tegor ies :
(1) input time, (2) cocil:.i.le time, (3) load time, (4) run time, and (5)
output time. This ‘is t h e t i m e t o en te r
t h e problem i n t o the computer by m a n s of whatever man machine i n t e r f a c e
i s ava i l ab le , be it te le type , punched cards, ’graphics termi.na1, or t h e l ike.
It includes time spent i n input system software manipulations - Compile
t ime is t h a t time necessary t o t r a n s l a t e the language of t he program i n t o
symbolic machine language. I n most computing systems a higher l e v e l
language such as For t ran I V i s compiled by means of a system funct ion or
u t i l i t y program a.nd an output, t y p i c a l l y a b inary output, i s made a v a i l -
a b l e for t h e computer or sonic intermediate s torage means such as d i sk or
t a p e meniory so t h a t t he coni-piled program ca,n be loaded i n t o t h e couiputer
a t an another time. Load time is the t i m e necessary t o input the compiled
program i n t o the a c t i v e computer memory. Loading i s a l s o done t y p i c a l l y
by means of a. u t i l i t y ’ subroutine.
loaded t h e run time measures the a c t i v i t y of the computer as it goes about
a c t u a l l y solving the problem presented. Very o f t en t h e run t i m e i s a
small f r a c t i o n of t he t o t a l time spent i n t h e compu-cing system. Typical
experience with a topologica l c i r c u i t a.nalysis programs of Calahan shows
t h a t compile and load t i m e on an IBI;I 7040/7094 DCS system i s of the order
of one t o two minutes whereas run time seldom exceeds one-ha-lf minute.
Output time is t h a t time necessary t o present answers i n a form s u i t a b l e
t o t h e i r end use. Input, compile, load and output t imes can be considered
as computer overhead. These times w i l l be expended no matter how simple
t h e problem is.
i n c r e a s e s ’ t o a poin t where it i s equal to or g rea t e r than the overhead
t i m e as shown i n Figure 1.

These timc i n t e r v a l s recur each t i m e a problem i s solved

Input time i s self-explanatory.

Once a problem has been compiled and

A s t he problem groiis i n s i z e t h e magnitude of run t i m e

/
C

..I

F i g w e 1
Coiputing t i m e as a funct ion of problem complexity

1
I '

- .
II

- _

Every comnputer system i s d i f f e ren t , t he re a r e no simple general
p r inc ip l e s vhich apply t o a l l .
c a p a b i l i t i e s of p r i p h c r a l equj.pment. Compile and load times depend
upon t h e language of the program and the soph i s t i ca t ion of a u t i l i t y
rout ine .
depend on hardware configuration t o soice ex ten t but, t o a g r e a t e r ex ten t ,
it depends upon t h e techniques used t o perj!orni computation.
time t h a t forms t h e center of i n t e r e s t i n our discuss ion of' coniputational
e f f ic iency .

Input and output t imes depend upon t h e

Run time on t h e other hand i s amenable t o analysis , it does

It i s t h i s .

ANALYSIS OF VIE COMPUTING TASK

h s i c Classes or̂ Coinpuier Gperations

The i n s t r u c t i o n r epe r to i r e of a computer u sua l ly includes a l l ordinary
a r i t hme t i c operat ions : addi t ion, substract ion, mu l t ip l i ca t ion and d iv i s ion
and with the a i d of u t i l i t y rout ines , d i f f e r e n t i a t i o n , i n t eg ra t ion and
o the r similar operations. . These are good examples of operat ions that can
be c l a s s i f i e d de te rminis t ic . They are determinis t ic i n the sense t h a t
t hey can be performed i n a f i n i t e length of' time, which t i m e reinains t h e
scam or nea r ly t h e same vhenevcr t h e operat ions are performed. Other
opera t ions n a t u r a l t o computing equipment and which f a l l i n t o t h e c l a s s
of de te rminis t ic operat ions a r e t h e l o g i c a l func t ions "And.", "Or" e t c .
There i s another c l a s s of operat ions which have no uniquely defined
a p r i o r i outcome. The recursive c y c l i c operat ions discussed below are
such non-determinis t ic operations. .Coinputer branching operat ions. such
as "if" statements and ''go t o t r or "jump"' s t a t c a e n t s f a l l i n t o th3.s c l a s s .
These are ca l l ed p r o b a b i l i s t i c operat ions because it is assumed t h a t a
f i n i t e p robab i l i t y e x i s t s t h a t such an operat ion w i l l produce a given
r e s u l t . The run t i m e mentioned earlier i s composed of the t i m e necessary

. . t o perform a l l opera t ions . whether de te rminis t ic o r p r o b a b i l i s t i c . I n the
a n a l y s i s of run t i m e f o r sone problems, i t may be more meaningful t o view

, t h e computation process as e n t i r e l y p r o b a b i l i s t i c or for some computations
it may be more advantageous t o v i e w . the opera-Lions as de te rmin i s t i c or a
combination of de t e rmin i s t i c and p robab i l i s t i c . A more d e t a i l e d d i s -
cussion of these t o p i c s w i l l be given below.

.'

Cyclic Operations

P i e computing t a s k i s seldom devoid of cyc l i c operations. Computing
cyc le s ,%re of two bas i c types, recurs ive and jndcxed. The recurs ive cycle
i s a s e r i e s of coin-guting operations repeated u n t i l some t e s t performed on
the da ta computed conforrns t o 8 t es t c r i t e r i o n at which poin t t h e opera-
t i o n i s coniplcte. It i s not possible beforehand t o determine t h e number
of cyc les i n the operat ion without a t first hiowing something about t he
charac te r of t h e input da t a i n t h e cycle of operations.
cycle , on the o'cher nanG, is a f i x e d nuniiier or r e p e i i t i o n s of t he bame

The indexed

. . I

r

computing operations. , T h i s . number i s determined a p r i o r i and remains
t h e same f o r a l l evaluations of input data.
multiply ;computing t imes by large l a c t o r s .

Cyclic operat ions t y p i c a l l y

13ackground

There has been r e l a t i v e l y l i t t l e t h e o r e t i c a l work on t h e a n a l y s i s of
t h e computing t a sk reported i n t h e l i t e r a t u r e .
p a r t l y because of t h c complexity of performing such a n a l y s i s and p a r t l y
because mathemt ica l techniques have no-t been f u l l y developed t o a sufi 'i-
c i e n t degree t h a t such ana lys i s i s e n t i r e l y poss ib le o r p r a c t i c a l . A t
t h e present time, t h e consensus of those ac-Live i n t h e l i t e r a t u r e seems
to jnri-i ca-te t h a t the theory sf l i i ~ z a r grz,phs 25:: and should be used as
t o o l f o r analyzing t h e computing t a s k . Eknaghraby 111 has developed a
mathematical technique' f o r &he a n a l y s i s of general ized a c t i v i t y networks
such as those used i n scheduling of business operat ions; however, much of
t h i s work i s d i r e c t l y applicalDle t o t h e a n a l y s i s of t h e computing task .
Elmaghraby's work is.monumenta1 i n t h e sense thal; h i s mathematics for t h e
algebra of general ized a c t i v i t y networks forms an excel lent uni€ying
concept which al.lows o ther graph t h e o r e t i c a l concepts such as t h e s i g n a l
flow graph and t h e FERT ty-pe scheduling flow graphs t o be t r e a t e d as a
s p e c i a l case. P r i t s k e r [31 and o t h e r s have developed t h e theory of t h e
generalized a c t i v i t y network espec ia l ly as. it a p p l i e s t o t h e scheduling
problem. Martin and E s t r i n have 'done some experimental work using computer
models of mathematical computation processes t o analyze such q u a n t i t i e s
as t o t a l computing t ime and the p r o b a b i l i t y of occurence of a given
output. ' Karp [5 J and Marimou.nt [6 J have developed some use fu l tech-
niques f o r t h e ana lys i s of t h e computer programmink task which a r e more
o r less appl icable t o t h e ana lys i s of t h e e n t i r e computational t a s k .
There a re , however, important. d i s t i n c t i o n s which w i l l be discussed l a t e r .
Analysis of t h e computing t a s k i s a t b e s t a d i f f i c u l t job and a job for
which no a l t o g e t h e r s u i t a b l e mathematical techniques have been devel.oped.
A conslderable amount of work needs t o be done i n t h i s f i e l d before
s a t i s f a c t o r y theory i s developed a n d before it w i l l be poss ib le t o accurate-
l y estimate t h e cost of a l l computational t a s k s , I n t h i s s e c t i o n w e will
discuss some of t h e theory already i n exis tence along with some new appl i -
ca t ions of o l d e r graph t h e o r e t i c a l concepts and w e s h a l l at tempt t o i n d i -
c a t e where poss ib le those areas which could provide t h e g r e a t e s t b e n e f i t
from f u t u r e % h e o r e t i c a l work, also a new d i s t i n c t i o n between computation
graphs and program graphs i s made.

This i s probably so

1

~

Graphical Model of a Computation

The f irst s t e p i n t h e ana lys i s of a computational t a s k i s t h e genera-
t i o n of a l i n e a r or ien ted graph known also as d i rec ted graph or digraph
represent ing t h e process.

l i n e a r or ien ted graph.

There are a t l e a s t ~ W G b a s i c metliod..; of
a-ssrgfii_~g n;pvli-f;a-ti-vre and ~ ~ ~ ~ t i . t ~ t i ~ v ~ ~ f ~ f ~ ~ i ~ ~ t i ~ ~ to the eleaeiits of a

The f i r s t used by E s t r i n and Turn [lo] Marimount

!

.

c

[6] and o thers ass iGns a quant i ta t ive eva1.uation t o t h e nodes or v e r t i c e s
of the graph and a precedence rela-Llonsh-ip o r t h e e s s e n t i a l topol.oll;jr of
t h e graph t o t h e d i rec ted edges. This pliil.osophy of assignment of ver tex
and edge s igni f icance i s very d i f f e r e n t from t h a t used by K a r p and o thers
wherein t h e edges a r e assigned 8 quant i ta . t ive v a h e such as execution time
and probabi l i ty and vei%iccs arc used t o formulate t h e topol.ogy and t o
e s t a b l i s h precedence., I n a sequence of opera1;ions within a comnputational
task , vei-ticec can be thought o f as represent ing temporal milestones or t h e
i n s t a n t Vnat a par t i -cu lar operation begins o r ends. It i s t h i s type of
ver tex and edge assignment t h a t wi1.1 be considered exclusively i n th3.s
paper, p a r t l y because a grea te r body of theoreLica1 knowledge i s a v a i l -
able f D r mvc,ml-,,- . A - C L +I??.”,. 1.1-

bjLup110 y l u l U J I U O C y u a l l t l e ~ and pBi-t:y b ~ c ~ i s e of the -vdiie of
such a graph as an a i d t o v isua l iz ing t h e operations contained within a
computing t a s k .
flow graph and t h e graph used i n communications theory t h u s such a graph
b e n e f i t s by mathematical developments i n t h e s e r e l a t e d f i e l d s .

Such a graph corresponds more c l o s e l y t o t h e s:i.gnal

A t y p i c a l s implif ied model of -the l i n e a r or ien ted graph of a computa-
t i o n a l t a s k i s given i n Figure 2.
rratheniatical formula f o r computing t h e magnitude of 6 vector from i t s
orthogonal components (t h e Pythagorean theorem).

This Graph has been derived from t h e

‘Figure 2
Linear Oriented Graph of a Computing Task

Note t h a t t h e mathematicd formula e s t a b l i s h e s c e r t a i n precedence
. re la t ionships , t h a t is, t h e squares nust be taken before summing and each
must be complete before the f i n a l square root operal;ion i s performed.
Every computational t a s k ’ h a s cer ta in precedence re la t ionships which remain
i n v i o l a t e . These a r e adequately expressed i n t h e form of a l i n e a r or iented
graph and it i s t h i s graph which can be thought of as t h e fundamental means
of ana lys i s .

The topology of a graph representing a coniiiutation i s very d i f f e r e n t
froin the topol.ogy of a graph representing a computer program as w i l l b e
demonstrated by wri t ing a simple program f o r t h e funct ion given i n Figure
2. VIZ:

6

Program e gent

a.

b.

C.

d.

e.

f .

fetch. X

square X and hold a

a

f e t c h X,,
square X,, and hold

sum X + Xb2, and ho1.d a

take' square root of X + X,,* a
I n t h i s simple program, a l l events ta,ke p lace i n sequence and t h e

e n t i r e computing operat ion can be represented as shown i n Figure 3.

P A FI NlSH a b d
5 TART O-~IX+----~-G~QQ---

Figure 3
Linear Oriented Graph of t h e Computer Program of t h e Fythagorean Theorem

A set of ru l e s or an algebra could be developed for generat ing t h e
program graph from t h e computation graph i n a systematic way.
wmld be great i n providing a systematic way whereby t h e precedence rela-
t i onsh ips could be preserved and t h e t o t a l computing c o s t s determined a
p r i o r i . For t h e more complex programing t a s k s where a multiprocessing
c a p a b i l i t y exTsts t h e program graph can be used t o evaluate e f f e c t s of
p a r a l l e l computing. The program graph for t h e simultaneous use of two
processors f o r t h i s example would be topologTcally i d e n t i c a l t o t h e
computation graph and t h e t a s k would t ake l e s s t i m e as a r e s u l t . From,
t h i s it should be c l e a r t h a t the program graph i s dependent not only on,
t h e topology of t h e computation graph but a l s o on t h e capabil . i ty of
processing hardware.
on t h e problems of optimum multiprocessing.

The value

Additional research i s needed i n t h i s a r e a e spec ia l ly

Signif icance of Edges, Vertices, Paths and Loops

So far, t h e development of t h i s method of ana lys i s by means of t h e
graph model of a computational t a s k has been thoroughly general i n t h a t
it app l i e s equal ly wel l t o schedules, s i g n a l f low graphs and any o the r
process which depends on a quan t i t a t ive edge nomenclature and precedence
r e l a t ionsh ips between edges but i n t h e ana lys i s of t h e computation t a s k
w e s h a l l a sc r ibe t h e following meaning t o edges, ve r t i ce s , paths, and
loops :

1. EZges represent computing operat ions and t h e weight or value
assigned t o an edge s h s i i represeni Yne s e t of q u a n t i t i e s Ynat
measure t h e computing 'operat ion such as probab i l i t y o€ execution,
execution time, memory requirement, chance of e r ro r , e t c .

.

.A

. .

- 1

2. Vert ices as mentiohed e a r l i e r represent. the beginning and end
of an operation.

. 3. Paths rcpresent a sequence of operat ions with weights or values
computed as j o i n t p robab i l i t i e s , t o t a l t h e of execution and
t o t a l chance of error, e t c . f o r the edges t raversed.

4. Loops represent cyc l ic operat ions or a recur r ing set of iden-ti-
c a l operations.
ind ica ted earlier under cyc l i c ,operations.

Recursive and indexed loops are poss ib le as

To i l l u s h a t e these re la t ionships , w e w i l l use another s impl i f ied
example of a computing t a sk as shown i n Figure 4 for a graph containing
a de terminis t ic cycl e .

AEPEAT i'l T I M E S

C

F E T C H A
A 0 e

F E T C H A
A 0 e P

t Figure 4
Computation Graph fo r the Expression Y = A Xi + I3

i= I

The quant i ta t ive inf'ormation associated with the edges of t h e graph of
Figure 5 i s as follows:

Edge
a
b

' d
e
f
t5

-

C

Probabi l i ty
Operation Time (sec) of occurrence

1 sec. 1 .
2 1
3 1
2 1
1 1
1 1 .
n (a multiplying f a c t o r) 1

In order t o evaluate t h i s graph quant i ta t ive ly , it w i l l f i r s t be
necessary t o discover a l l cycl ic operat ions or loops, and transform
these i n t o acyc l i c equivalenis. Then, a pr0gra.m graph can be developed
on the b a s i s of some f ixed compting hardware configurat ion. From t he
program graph w r i l l come the r e s u l t s desired i n t h e form of the cost of
t h e computation task' measured in seconds and the p robab i l i t y of occur-
rence of t he output Y. Clearly, i n t h i s example, the output Y i s a
cer.i::i35 ri-i;y ?te!c:a~j.s~ +he n r n h h i 1 i ty ~f o e r . i j - r r ~ f i ~ e of pa& edge i ~ 1 ~ 2 - j . f : y ~

c- - --- -
The cyc l i c t o acyc l i c transformation i n t h i s case simply i n f e r s t h a t

edges a m d b are replaced by edges a' and b' having operat ion times n . , *

. .
I times l a r g e r t han t h e or ie ; inal operat ion times.

han-lware, t he sfnglc path graph of Figure 5 represcilbs t h e des i r ed r e s u l t .
Martin and E s t r i n [8 1 have discussed cyc l i c t o acyc l i c t ransformations of
a program graph i n a general way.

For serial compu-ting

S t a r t a ' b ' e C P d f i n i s h

Edge
a '
b ' .

d
e
f
e

C

P r o b a b i l i t y of
0p;;t:o; Time occurrence

1

2 1
3 1
2 1
1 1

0

n(2) = 2n 1

0 (not i n t h e graph)

Figure 5 L Single Path Program Graph of t h e Function Y = A

n
P

J.: I

Tota l computing t i m e i s seen t o be (3n -+ 8 sec) t h e sum of a l l opera-
&

t i o n t i m e s from start t o f i n i s h and t h e p robab i l i t y of occurrence of
output i s 1, t h e j o i n t p robab i l i t y of occurrence of a l l edges.

If hardware v a r i a t i o n s gre poss ib l e so t h a t t h e grea'kest amount of
pa ra l l e l i sm i n computing i s allowed, t h e minimum computing t ime can be
found t o be propor t iona l t o t h e length of t h e longes t pa th of Figure 5
a f t e r cyc l i c t o acyc l i c transformation; namely, a ' , b ' , c, d or (311 + 5)
seconds. These r e s u l t s a r e t r u e i n general , t h a t is, t h e sho r t e s t possi-
b l e t i m e f o r computation i s t h e maxiinum length path from start t o f i n i s h of
t h e computation graph and t h e longest i s t h e sum of a l l operat ion t imes
after cyc l i c t o .acycl ic t ransformation has been considered.

The Probabi l i s t . ic Computation

Consider t h e following p r o b k b i l i s t i c computation and the assoc ia t ed
graph shown i n Figure 6.

A X + B r-$. (Y U + B < f o r X =O

f o r X X

i FETCH I3
b B o

A

X

C

Y

Figure 6
Graph of a P robab i l i s t i c Coqmtation Process

I n t h i s graph, Vertex 6 represenTs t h e stayt of a branch or tes t operation,
t h e outcom of which depends on t'ne mngnitude of X.
a.n edge which i s t raversed only i f X 59.
which i s t raversed only i f X >o.
p r o b a b i l i t y 0.5 as indica ted ii t h e following table:

Edge f represents *

And et?ge g represents an edge
To these edges i s assigned t h e f i n i t e

Edge No.
a
b

d
e
f
t3
h
1

C

j
k

Operation Time
1
1 .
1
1
1
2
2
4
4
1
8

Probab i l i t y of
Oc cur r en c e

1
1
1
1
1

,

' 5
95
1
1
1
1

The program graph of t h i s funct ion using s e r i a l computing hardware i s not
a s i n g l e path b u t two a l t e r n a t e pa ths as shown i n Figure 7'.

Figure 7
Program Graph €or a Probab i l i s t i c Function of Computation

The avemge time of conputation for a randoni va r i a t ion of values of
x i s computed i n the fo310wing way:

' a v ' = t e -i r f (t f -1- t a 4- t h - l . t b 9- t .) J

, -

where t represents opcration time and I? represents p robab i l i t y of
occurrence of an e ~ e .

= 1 + . 5 (2 + 1 + 4 + 1 + 1)

+ .5 (2 -I- 1 + 4 4- 1 + 8)

The p robab i l i t y of output i s the sum of the j o i n t p r o b a b i l i t i e s through
each path:

<
P = 0.5 + 0.5 = 1 Y

By sh i l a r means, any number of p r o b a b i l i s t i c operat ions can be analyzed
and the p robab i l i t y of outpu$ along with average execution t-imes can be
developed .

llnne problem of optimization -of a computa-tlion process i n a d i g i t a l
conputing system includes, but. is c e r t a i n l y not l imi ted t o the c o s t s
of computation as measured by computing t.in:e, hardware requirements and
e r r o r p r o b a b i l i t i e s .
may vary from one computation t o another are s a t i s f i e d . i n one case
opt imizat ion may mean allowing a cer- ta in conputation t o be perfwmed
with a minimum memory requirement i n t h e hardware, whereas i n another
case, it may be required t o reduce the t o t a l error probabi l i ty . One
minimization problem nlay d e a l with a completely serial s e t of opcra-
t i o n s whereas another may involve mul t ip le processors.
genera l statements which can be made about t h e problem of optimization
b u t one which does apply i n most cases i s t h i s :
make e f f i c i e n t use of the computing hardware t o s a t i s f y a primary objec-
t i v e such as speed or r e l i a b i l i t y ' t r h i l e at. t h e same time s a t i s f y i n g se-
condary objec t ives such as accuracy. There c e r t a i n l y are exceptions t o
t h i s gene ra l i t y but our a t t en t ion i n t h i s paper has been d i r ec t ed toward
those appp1icat;ions where it appl ies .
computing i n a systein which has more than enough bas ic computing ca2aci.ty.
i n such a system, it might. be des i rab le t o minimize the t o t a l program-
ming e f fo r t . by using r e l a t i v e l y i n e f f i c i e n t but easy t o program subroutines.
"his prablem and o the r s of t h e ty-pe can be considered outs ide of t h e
class Gf problems needing opt.iniization.

Optimization i n f e r s t h a t c e r t a i n c r i t e r i a which

There are few

A computation should

One poss ib le exception would be

-.
.*

. . I

L

c

r

The fi-rst s t e p i n any prD-d..rn of op-t;irnizotion i s purely mathe-
nm-Licnl.
ca t ion and s imt ln r rtieans t o e;ulira:il;ee -i'nxvt t h e answers which a r e sought
a r e a r r ived at mathematically i n -L:he most expeditious vay.
o r more methods of mathemt ica l a.nnlysis f o r the same probl.em e x i s t , it
mzy be necessary t o analyze each :wiihod r igorously before it can be
determined which i s ti?e more e f f i c i e n t .
mathemt ica l s impl i f ica t ion i s factor ing.
a nunit7er o€ t e m s i n an al~gebrafc e>qression, it i s conputationally more
e f f i c i e n t t o ex t rac t t h i s factor , compute .%lie indicated intermediate
result, and mu1ti.pl.y t h e intermediate resuYG by t h e coimiion f a c t o r before
proceeding.

It involves. the well-known techniques of a lgebraic simplif i-

\There two

A very simple example of
If a common f a c t o r e x i s t s i n

Vany similar opemt-ions a n 3 transformations are possible .

hf't.er one 5 s Zssured thai tt:e ~ i ~ s l i e s t pr,s:t;lc pa-iiheiy,~y;ical
expression f o r a given comprtaticnal process i s achieved, it i s then
necessary t o evaluate t h i s process q u a n t i t a t i v e l y and qual . i ta t ively by
means of t h e conputation gFaph. The coxputation graph i t s e l f may poin t
out overlooked p o s s i b i l i t i e s f o r a lgebraic s impl l f ica t ion . When t h e
graph has been formed, a n analysis of t h e graph may then be made.
S e r i a l chains of non-branching edges a r e then reduced t o s ing le edge
equ-ivalents. Also a l l loops or cycl ic operations a r e found. Then,
t h e graph i s transformed i n t o the equivalent a c y c l i c reduced graph.
This allows an even more accurate i n t u i t i v e understanding of t h e topology
of t h e computation graph. . .

The next and most c r i t i c a l s'iep i n t h e optimization process i s t h e
formation of a program graph f o r a compting system.
computing capabil-ity;, t h e problex i s considerably reduced. I n f a c t ,
s ince all necessary operations must be pel-formed i n sequence, c e r t a i n
general. f e a t u r e s of t h i s type corquting process can be discerned d i r e c t l y
from t h e computation graph. For Instance, t h e t o t a l time of computing
using serial processing w i l l be exact ly t h e sum of a l l computing t imes
evaluated using t h e computation gi-aph alone. This of course i s not t h e
case with p a r a l l e l coiaputing hard-mre. A p a r a l l e l computation requi res
considerably more e f f o r t t o optirLze.
an urgency c r i t e r i o n f o r optimization by an essen-tially trial and e r r o r
process.
operation i n que'stion t o t h e end of t h e conprbati-on.
i s being developed f o r p a r a l l e l processors and t h e c r i t e r i o n of perfor-
mance i s m:ini.riiwn computing time, one can inspect t h e compu-tation graph
a n a l y t i c a l l y t o f i n d t h e longest poss ib le independent sub-graph which
can be assigned t o one of t h e processors.
s e r i a l chain of operations' t h a t can be performed simultaneously with t h e
o t h e r operations of t h e cr::iputation and within the l imitpat ions of t h e
a v a i l a b l e hardware.

With only serial

Martin and Estr in , [8] have proposed

The urgency c r i t e r i o n i s a measure of path lengths from an
If a program graph

This sub-graph must be a

Figure 2 i s a simple example of a computation graph which could
be programmed e f f e c t i v e l y i n . two p a r a l l e l processors reducing t o t a l

The program graph i n t h i s instance would be i d e n t i c a l t o Figure 2, t h e
computation graph.

csiputing time bjr smaller of t h e two t-;;les f + + tb) (t -+ + 1
bd/ ' "a C

If a computation graph has no p a r a l l e l paths then it __,

’ .
t

I s nc;‘; possible t o . r e d u c e t o t a l cornpdtation t ime by t h e use of mult iple
processors.
than t h e r e a r e paral . lel processosrs ava-ilable, t h e b e s t assignment oZ t h e
a v a i h b l e eqifipnen’t 1.rould be t h a t asslignmcn-1; which produces t h e most
near ly equal. workload f o r each of the processors.
rules which could be used i n t h e assignment of p r i o r i t i e s for developing
the program graph of a mult iple processor system and t o our knowledge no

reduction beyond t h e c y c l i c t o acycl ic transform3tion m y be a g r e a t

contained i n a s i n g l e non-branching chain are coiiibined i n t o an equivalent
s ing le , edge with t h e wet ght j ng f a c t o r s computed from t h e combination of
weighting f a c t o r s found i n t h e o r i g i n a l chain, a simpler and more r e a l i s -
t i c i r l i e r ~ p ~ e t ~ i ; i o i i of t h e coinp?;‘iing r z q ~ i r z x c n t is possible. IC -1:hLS
reduced forin of graph, decisions f o r p r i o r i t y assignment may be made
l a r g e l y on t h e b a s i s of conrparison between sets of s ingle edges within
t h e gra.ph.

On t h e other hand, i f iriore p a r a l l e l paths are possible
, .

There are many poss ib le
’ ,--

. comple-te optimal solut ion t o t h t s problem has been proposed. Graph

I help i n t h e p r i o r i t y assignment. If a l l edges of a computation graph

The opti.m>.zation problem i s c e r t a i n l y not a simple piwblem, but it
i s exceedingly interestl ing espec ia l ly where t h e mult iple processing
c a p a b i l i t y e x i s t s . Once t h e c r i t e r i a f o r optimization have been estab-
l i shed , then c e r t a i n methods based on t h e ana lys i s of t h e computation and
program graph a r e poss-ible t o o l s f o r optimization. The computation graph
sets t h e scene and ind ica tes . what pa.rallelS.sm i f any i s possible . The
graph reduction by cyc l ic t o acycl ic transformation and t h e reduction of
serial non-branching chains t o s ing le elements considerably s i m p l i f i e s
the ana lys i s .
t e c h n i c a l t e r r i t o r y which needs f u r t h e r developiiient I)

Here t h e r e i s cer ta in ly a l a r g e a r e a of unexplored

SUMMARY AND CONCLUSIOXS

The purpose of t h i s paper was t o d i scuss t h e problem of e f f i c i e n c y
i n t h e d i g i t a l computer, considering t h e s t r u c t u r e of cos t of compkation.
Some ideas r e l a t i n g t o methods of a n a l y s i s of computational processes and
methods of reducing computing cost were t r e a t e d i n a general and conceptual
manner emphasizing possible f r u i t f u l avenu:s of d e t a i l e d inves t iga t ion .

Much work i s s t i l l l e f t unfinished. A b e t t e r understanding of t h e
a lgebra of re la t ionships between the computation graph and t h e program
graph i s needed.
processors are a l s o needed and optimization methods must be developed
whereby t h e best use of computing hardware can be permitted.

Decision rules f o r p r i o r i t y assignnient of mult iple

. r n E r n C E S

[l] 1 2 i N A ~ I W W , S . E., "An Algebra for t he Analysis of Generalized
495-514, April 1964. Ac Livity Neiirorks, I ' Pan;t::ercm-t Science,

[2] IIOHN, F, E.: SESIU, S. and AIWJX.Af.,Tp, D. Do, "The !Theory of Nets,"
IRE Transactions of Elcc-tyonic Co~1p te r s , Vol. EC6, No. 3, pp 154-
-5t. 1957.

[3] PXiTSiCBR, A. B., ."Gert Grxjhicsl Evaluation and Review Technique, I '

NASA Report 1~24973, April 1966. . .
[4] PRITSKdR, A, B. and DRWfiER, S. M,, "Network Analysis of a Countdown,"

F-A-SA- &pori;. ?x&97Gj Ffircll 1966,

[5] KRRP, R. M., "A'.Z3te on the Application of Graph Theory t o D i g i t a l
Computer Programzing, ' I Information and Control, Vol. 3, pg 179-19,
1960.

[6] MARIMOUYT, R. B., "Applications of' Graphs and Boolean Matrices t o
Colriputcr Programing," SlAM Review, Vol. 3, No. 4, pp 259-268,
oct. 1960.

[7] MARTIXT, D. F. and ESTRIN, G,, "Expcrinicnts on Models of Computations
' and Systems, I' IEEE Transactions on Elec t ronic Computers, - Vol. EC-16,

No. 1, pp 59-69, Fcb; 1967.
--

[8] MARTIN, P. 17. and ESTRIN, G., "Nodels of Computation Systems - Cyclic
t o Acyclic Transformations,)' IEEE Transactions on Elec t ronic Computers,
Vol. EC-16, No. 1, pp 70-79, Feb. 1947.

[9] $lAETIN, D. F. and ESTER, G., "Models OS Computation Systems -
Evaluation of Vertex P robab i l i t i e s i n Graph Models of Computations, I t

Journal, of t h e Association for Comput-ing Plachinery, .- pp 282-299,
Spring, 1967.

[lo] ESTRIN, G. and TURii, R., "Automatic A s s i ~ ~ e n t of Computations i n
a Variable S t ruc ture Computer System," IE%E Transactions on Elec t ronic
Computers, VO~. EC-12, pp 755-773, Sec. 1963.

[ll] KIM, W. H. and CHIEN, R, T.,
of Communications Retworks, Columbia Universi ty Press, 1962.

Topological Analysis and Synthesis

