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709 WHOd ALITIOV J Because the computer is being used effectively in many fields,.

especially in the fields of circuil and system design, a real motivation
exists for efficiency. Many software packages such as SEPTRE, ECAP, and
NET 1 have proven the point that circuit snd system design engineering
can be effectively aided by intelligent use of the computer and this

use is limited not only by available computing equipment but also by
methods of computing, methods which vary widely in efficiency. Elect=-
ronics circuit analysis programs of today are very sophisticated and
capable of analyzing large networks. They very often require memory
capacity and computing times that tax the resources of a small computing
installation. The use of such programs represents a cost that can be
measured by a number of factors including computing time and memory
capacity and this cost must be compared with the benefit derived. Some
programs are less costly than others when performing the same analysis
function and some programs are definitely unsuited to performing certain
computations, not because they lack the capability, but because the

cost of doing these computations is too great.

: This paper has been written in an attempt to discuss the problem
of efficiency of computation in the digital computer in a conceptual
way. _“une cost of a computation as measured by the time necessary for
perforaing the required operations and the memory capacity or other '
hardwa & requirements. is treated. A method of analysis utilizing the
graph thecretical approach for evaluating the cost of computation is

- introduced. This method is new insofar as it makes a logical distinction
between the linear graph of a computation and the linear graph of a pro-
gram and shows in generality the importance of the relationships between,
these two graph models without going into any great depth to describe
the algebra of these relationships. A number of distinctions in graph
structure such as cyclic operations and variations in the types of
operations such as deterministic or probabilistic are discussed. The
optimization problem is vieyed as it relates to the assignment of
priorities among processors in a multiprocessing hardware configuration.
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Elements of the Cost of Computation

The
analysis
with the

this paper, it will be asswsed that
able and a motive to make efficient
more important elements of the cost
time, (2) computer capacity and (3)

fundamental and prerequisite costs of doing electronic circuit

and design by means of a digital computer is that cost associated
acquisition of a computer of computing service;
acquisition or rental cost of hardware will not be dlscusepd here.

however, this

In
digital computing equipment is avail-
use of this equipment exists. The

of computing depend upon (1) computlng
computer error probability.

Once the

The computational task usually begins with programming.
hrov1amm1nn effort is completed and inforwmation for program input is
presented in some acceptdble form to the computer, a series of events
takes place which constitute the more important time intervals in the
computing process. These time intervals recur each time a problem is solved
by the computer and can be biniken up into the following general categories:
(1) dinput time, (2) compile time, (3) load time, (4) run time, and (5)
output time. Input time is self-explanatory. This is the time to enter
the problem into the computer by means of whatever man machine interface
is available, be it teletype, punched cards, ‘graphics terminal, or the like.
It includes time spent in input system software manipulations. Compile
time is that time necessary to translate the language of the program into
symbolic machine language. In most computing systems a higher level
language such as Fortran IV is compiled by means of a system function or
utility program and an output, typically a binary output, is made avail-
able for the computer or some intermediate storage means such as disk or
tape memory so that the compiled program can be loaded into the computer
at an another time. Load time is the time necessary to input the compiled
program into the active computer memory. Loading is also done typically
by means of a.utility subroutine. Once a problem has been compiled and
loaded the run time measures the activity of the computer as it goes about
actually solving the problem presented. Very often the run time is a
small fraction of the total time spent in the compucing system. Typical
experience with a topological circult asnalysis programs of Calahan shows
that compile and load time on an IBM TOLO/ 7094 DCS system is of the order
of one to two minutes whereas run time seldom exceeds one-half minute.
Output time is that time necessary to present answers in a form suitable
to their end use. Input, compile, load and output times can be considered
as computer overhead. These times will be expended no matter how simple
the problem is. As the problem grows in size the magnitude of run time
increases to a point where it is equal to or greater than the overhead

time as shown in Figure 1. /2////
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Figure 1- .
Computing time as a function of problem complexity



Every computer system is different, there are no simple gencral
principles vhich apply to all. Input and output times depend upon the
capabilities of peripheral equipment. Compile and load times depend
upon the language of the program and the sophistication of a utility
routine. Run time on the other hand is amenable to analysis, it does
depend on hardware configuration to some extent but, to a greater extent,
it depends upon the techniques used to perform computation. It is this
time that forms the center of interest in our discussion of computational
efficiency.

AWATYSIS OF TiHI COMPUTING TASK

Basic Classes of Computer Operations

The instruction repertoire of a computer usually includes all ordinary
arithmetic operations: addition, substraction, multiplication and division
and with the aid of utility routines, differentiation, integration and
other similar operations.  These are good examples of operations that can
be classified deterministic. They are deterministic in the sense that
they can be performed in a finite length of time, which time remains the
same or nearly the same whencver the operations are performed. Other
operations natural to computing equipment and which fall into the class
of deterministic operations are the logical functions "And", "Or" etc.
There is another class of operations which have no uniquely defined
a priori outcome. The recursive cyclic operations discussed below are
such non-deterministic operations.,  Computer branching operations.such
as "if" statements and "go to" or "jump' statements fall into this class.
These are called probabilistic operations because it is assumed that a
finite probability exists that such an operation will produce a given
result. The run time mentioned earlier is composed of the time necessary
to perform all operations. whether deterministic or probabilistic. In the
analysis of run time for some problems, it may be more meaningful to view
the computation process as entirely probabilistic or for some computations
it may be more advantageous to view the operations as deterministic or a
combination of deterministic and probsbilistic. A more detailed dis-
cussion of these topics will be given below.

Cyclic Operations

The computing task is seldom devoid of cyclic operations. Computing
cycles are of two basic types, recursive and indexed. The recursive cycle
is a series of computing operations repeated until some test performed on
the data computed conforms to a test criterion at which point the opera-
tion is complete. It is not possible beforehand to determine the number
of cycles in the operation without at first knowing something about the
character of the input data’in the cycle of operations. The indexed
cycle, on the other hand, is & fixed number of repetitions of the same



computing operations. . This number is determined a priori and remains
the same for all evaluations of input data. Cyclic operations typically
multiply compublng times by large Tactors.

Background

, There has been relatively little theoretical work on the analysis of
the computing task rcported in the literature. This is probably so
partly because of the complexity of performing such analysis and partly
because mathematical techniques have not been fully developed to a suffi-
cient degree that such analysis is entirely possible or practical. At
the present time, the consensus of those active in the literature seems
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tool for analyzing the computing task. Elmaghraby [1] nas developed a
mathematical technique for the analysis of generalized activity networks
such as those used in scheduling of business operations; however, much of
this work is directly applicable to the analysis of the computing task.
Elmaghraby's work is -monumental in the sense that his mathematics for the
algebra of generalized activity networks forms an excellent unifying
concept which allows other graph theoretical concepts such as the signal
Tlow graph and the FERT type scheduling flow graphs to be treated as
special case. Pritsker [3] and others have developed the theory of the
generalized activity network especially as. it applies to the scheduling
problem. Martin and Estrin have done some experimental work using computer
models of mathematical computation processes to analyze such quantities
as total computing time and the probability of occurence of a given
output. Karp [5] and Marimount [6] have developed some useful tech-
niques for the analysis of the computer programming task which are more
or less applicable to the analysis of the entire computational task.
There are, however, important  distinctions which will be discussed later.
Analysis of the computing task is at best a difficult job and a job for
which no altogether suitable mathematical technlques have been developed.
A considerable amount of work needs to be done in this field before
satisfactory theory is developed and before it will be possible to accurate~
ly estimate the cost of all computational tasks. In this section we will
discuss some of the theory already in existence along with some new appli-
cations of older graph theoretical concepts and we shall attempt to indi-
cate where possible those areas which could provide the greatest benefit
from future theoretical work, also a new distinction between computation
graphs and program graphs is made.

Graphical Model of a Computation

The first step in the analysis of a computational task is the genera-
tion of a linear oriented graph known also as directed graph or digraph
representing the process. There are at least two basic methods of

assigning qualitative and gquantitative information 1o the elements of a

linear oriented graph. The first used by Estrin and Turn [10] Marimount



.

[6] and others assigns a quantitative evaluation to the nodes or vertices
of the graph and a precedence relationship or the essential topology of
the graph to the directed edges. 'This philosophy of assignment of vertex
and edge significance is very different from that used by Karp and others
vherein the edges are assigned a: quantitative value such as execution tine
and probability and vertices are used to formulate the topology and to
establish precedcnce. In a sequence of operations within a computational
task, vertices can be thought of as representing temporal milestones or the
instant that a particular operation begins or ends. It is this type of
vertex and edge assigmment that will be considered exclusively in this
paper, partly because a greater body of theoretical knowledge is avail-
ablc for graphs with these qualities and pgritly because of the value of
such a graph as an aid to visualizing the operations contained within a
computing task. Buch a graph corresponds more closely to the signal

flow graph and the graph used in communications theory thus such a graph
benefits by mathematical developments in these related fields.

A typical simplified model of the linear oriented graph of a computa-
tional task is given in Figure 2. This graph has been derived from the
mathematical formula for computing the magnitude of a vector from its
orthogonal components (the Pythagorean theorem).
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, _ ‘Figure 2
Linear Oriented Graph of a Computing Task

Note that the mathematical formula establishes certain precedence
. relationships, that is, the squares must be taken before summing and each
must be complete before the final square root operation is performed.
Every computational task has certain precedence relationships which remain
inviolate. These are adequately expressed in the form of a linear oriented
graph and it is this graph which can be thought of as the fundamental means
of analysis.

The topology of a graph répresenting a computation is very different
from the topology of a graph representing a computer program as will be
demonstrated by writing a simple program for the function given in Figure
2. V1Z: ’



Program event

a. " fetch. X
a
b. ' . sguare Xa and hold
c. " fetch Xb
d. v square'Xb and hold
K 2 2
e. - sum X ~ + Xb and hold
. a .
, ' 2 2
. ) ; +
f . take square root of Xa Xb

In this simple program, all events take place in sequence and the
entire computing operation can be represented as shown in Figure 3.
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Figure 3
Linear Oriented Graph of the Computer Program of the Pythagorean Theorenm

A set of rules or an algebra could be developed for generating the
program graph from the computation graph in a systematic way. The value
waald be great in providing a systematic way whereby the precedence rela-
tionships could be preserved and the total computing costs determined a
priori. For the more complex programming lasks where a multiprocessing
capability exists the program graph can be used to evaluate effects of
parallel computing. The program graph for the simultaneous use of two
processors for this example would be topologically identical to the
computation graph and the task would take less time as a result. From
this it should be clear that the program graph is dependent not only on,
the topology of the computation graph but also on the capability of
processing hardware. Additional research is needed in this area especlally
on the problems of optimum multiprocessing.

Significance of Edges, Vertices, Paths and loops

So far, the development of this method of analysis by means of the
graph model of a computational task has been thofoughly general in that
it applies equally well to schedules, signal flow graphs and any other
process which depends .on a quantitative edge nomenclature and precedence
relationships between edges but in the analysis of the computation task
we shall ascribe the following meaning to edges, vertices, paths, and
loops:

1. Edges represent computing operations and the weight or value
assigned to an edge shall represent the set of quantities that
measure the computing operation such as probability of execution,
execution time, memory requirement, chance of error, etc.

~!



2. Vertices as .mentioned earlier represent the beginning and end
of an operation.

* 3. Paths represent a sequence of operations with weights or values
computed as joint probabilities, total time of execution and
total chance of error, etc. for the edges traversed.

k. Toops represent cyclic operations or a recurring set of identi-
cal operations. Recursive and indexed loops are possible as
indicated earlier under cyclic operations.

To illustrate these relatlonshlpu, we will use another simplified

example of a computing task as shown in Figure 4 for a graph containing
a deterministic cycle.
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Computation Graph for the Expression Y = AHEZ X. + B
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The quantitative information associated w1th the edges of the graph of
Figure 5 is as follows:

Probability
Edge Operation Time ( sec) of occurrence
a - 1 sec. 1
b 2 1
c 3 1
d 2 1
e 1 1
by 1 1
g n (a multiplying factor) 1

In order to evaluate this graph quantitatively, it will first be
necessary to discover all cyclic operations or loops, and transform
these into acyclic equivalents. Then, & program graph can be developed
on the basis of some fixed computing hardware configuration. From the
program graph will come the results desired in the form of the cost of
the computation task' measured in seconds and the probability of occur-
rence of the output Y. Clearly, in this example, the output Y is a

1

certainty becanse the probability of occurrence of each edge is unity.

The cyclic to acyclic transformatlon in this case simply infers that
edges a and b are replaced by edges a' and b' having operation times n B




times larger than the original operation times. For serial computing
hardware, the single path graph of Figure 5 represents the desired result.
Martin and Estrin [8] have discussed cyclic to acyclic transformations of
a program graph in a general way.

Start a' ! e c £ a finish
C 0 L -0 &G L0 -0
_ Probability of
Edge Operation Time occurrence
a' n(l) = n 1
D! n(2) = 2n 1
c 2 1
d 3 1
e 2 1
f 1 : 1
g 0 (not in the graph) 0

‘ Figure 5 n
Single Path Program Graph of the Tunction ¥ = A /, Xi + B
. ot
Total computing time is seen to be (3n + 8 sec) the sum of all opera-
tion times from start to finish and the probability of occurrence of
output is 1, the joint probability of occurrence of all edges.

If hardware variations dare possible so that the greatest amount of
parallelism in computing is allowed, the minimum computing time can be
found to be proportional to the length of the longest path of Figure 5
after cyclic to acyclic transformation; namely, a', b', ¢, 4 or (3n + 5)
seconds. These results are true in general, that is, the shortest possi-
ble time for computation is the maximum length path from start to finish of
the computation graph and the longest is the sum of all operation times
after cyclic to acyclic transformation has been considered.

The Probabilistic Computation

Consider the following probébilistic computation and the assoclated
graph shown in Figure 6

MX + B for X §O

X o for X >0
D - [
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Figure 6
Graph of a Probabilistic Computation Process

In this graph, Vertex 6 represents the start of a branch or test operation,
the outcome of which depends on the magnitude of X. Edge [ represents )
an edge which is traversed only if X =0. And edge g represents an edge
which is traversed only if X >0. To these edges is assigned the finite
probability 0.5 as indicated in the following table:

Probability of

Edge No. , Operation Time Occurrence
a 1 1
b 1 1
c 1 1
d 1 1
e 1 1
£ 2 <5
g "2 >
h L 1
H b 1
; ’ I 1
k 8 1

The program graph of this function using serial computing hardware is not
a single path but two alternate paths as shown in Figure T.

a h
0 o2
C oot o d
Figure T

Program Graph Tor a Probabilistic Function of Computation



The average time of computation for a random variation of valucs of
X is computed in the following way: :

” =t + -+t o+ + t 4+t
tav e Pf (if ta * th F tb ! tj)
+ t +t +t, + ¢t :
Pg(g ¢t Y ty o+t
where t represents operation time and P represents probability of
occurrence of an edge.

=1+.5(2+ 1+ L4+ 1 +01)
+.5(24 1+ b4+ 1+ 8)

t = 13.5

av

The probability of ouiput is the sum of the joint probabilities through
cach path:

P =0.5+0.5=1

- > >

By similar means, any nunber of probabilistic operations can be analyzed
and the probability of output along with average execution times can be
developed. '

OPTIMIZATION OF A COMPUTATION

The problem of optimization.of a computation process in a digital
computing system includes, but is certainly not limited to the costs
of computation as measured by computing time, hardware requirements and
error probabilities. Optimization infers that certain criteria which
may vary from one computation to another are satisfied. In one case
optimization may mean allowing a certain computation to be performed
with a minimum memory requirement in the hardware, whereas in another
case, it may be required to reduce the total error probability. One
minimization problem may deal with a completely serial set of opera-
tions whereas another may involve multiple processors. There are few
general statements which can be made about the problem of optimization
but one which does apply in most cases is thist A computation should
make efficient use of the computing hardware to satisfy a primary objec-
tive such as speed or reliability while at the same time satisfying se-
condary objectives such as accuracy. There certainly are exceptions to
this generality but our attention in this paper has been directed toward
those applications where it applies. One possible exception would be
computing in a system which has more than enough basic computing capacity.
In such a system, it might be desirable to minimize the total program-
ming effort by using relatively inefficient but easy to program subroutines.
This problem and others of the type can be considered outside of the
claus of problems needing optimization.

o




The first step in any problem of optimizstion is purely mathe-
matical. 1t involves the well-known techniques of algebraic simplifi-
cation and similar means to guarantee That the answers which are sought
are arrived at mathematically in the most expeditious way. Vhere two
or more methods of mathematical analysis for the same problem exist, it
may be necessary to analyze each nethod rigorously before it can be
determined which is the more efficient. A very simple example of
mathematical simplification is factoring. If a common Tactor exists in
a number of terms in an algebraic expression, it is computationally more
efficient to extract this factor, compute the indicated intermediate
result, and multiply the intermediate result by the common factor before
proceeding. Many similar operations and transformations are possible.

fter on is agsured +hat+ +h
er le Gl

S agsured tThat

expression for a given computati achieved, it is then
necessary to evaluate this proc vantitatively and qualitatively by
means of the computation graph. The computation graph itself may point
out overlooked possibilities for algebraic simplification. When the
graph has been Tormed, an analysis of the graph may then be made.

Serial chains of non-branching edges are then reduced to single edge
equivalents. Also all loops or cyclic operations are found. Then,

the graph is transformed into the equivalent acyclic reduced graph.

This allows an even more accurate intuitive understanding of the topology
of the computation graph.

£ . 4
soible mathematical
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The next and most critical step in the optimization process is the
formation of a program graph for a computing system. With only serial
computing capability, the problem is considerably reduced. In fact,
since all necessary operations must be performed in sequence, certain
general features of this type computing process can be discerned directly
from the computation graph. For instance, the total time of computing
using serial processing will be exactly the sum of all computing times
evaluated using the computation graph alone. This of course is not the
case with parallel computing hardware. A parallel computation requires
considerably more effort to optimize. Martin and Estrin [8] have proposed
an urgency criterion for optimization by an essentially trial and error
process. The urgency criterion is a measure of path lengths from an
operation in question to the end of the computation. If a program graph
is being developed for parallel processors and the criterion of perfor-
mance is minimum computing time, one can inspect the computation graph
analytically to find the longest possible independent sub-graph which
can be assigned to one of the processors. This sub-graph must be a
serial chain of operations that can be performed simultaneocusly with the
other operations of the crauputation and w1th1n the limitations of the
avallable hardware.

Figure 2 is a simple.example of a computation graph which could
be programmed effectively in two parallel processors reducing total

" - T aa (£ + %) (+ @ 3
"‘“’t ng tine b‘)' the smaller of the two times \ U ; Or \u v

a b ¢ " ba/e
The program graph in this instance would be identical to Figure 2, the
computation graph. If a computation graph has no parallel paths then it



is not possible to-reduce tobtal computation time by the use of multiple
processors. On the other hand, if more parallel paths are possible

than there are parallel processosrs available, the best assignment of the
available equipment would be that assignment which produces the most
nearly equal workload for each of the processors. There are many possiple
rules which could be used in the assignment of priorities for developing
the program graph of a multiple processor system and to our knowledge no
complete optimal solution to this problem has been proposed. Graph
reduction beyond the cyclic to acyclic transformation may be a great

help in the priority assignment. If all edges of a computation graph
contained in a single non-branching chain are combined into an equivalent
single edge with the weighting factors computed from the combination of
wveighting factors found in the original chain, a simpler and more realis-
tic inlerpretation of the computing requircment is possible. In this
reduced form of graph, decisions for priority assignment may be made
largely on the basis of comparison between sets of single edges within
the graph.

C%eoﬁjﬁzﬁjmlmﬁMemiscuvanImtasﬁmﬂemekm,hm:m
is exceedingly interesting especially where the multiple processing
capavility exists. Once the criteria for optimization have been estab-
lished, then certain methods based on the analysis of the computation and
program graph are possible tools for optimization. The computation graph
sets the scene and indicates what parallelism if any 1s possible. The
graph reduction by cyclic to acyclic transformation and the reduction of
serial non-branching chains to single elements considerably simplifies
the analysis. Here there is certainly a large area of unexplored
technical territory which needs further development.

SUMMARY AND CONCIUSIONS

The purpose of this paper was to discuss the problem of efficiency
in the digital computer, considering the structure of cost of computation.
Some ideas relating to methods of analysis of computational processes and
methods of reducing computing cost were treated in a general and conceptual
manner emphasizing possible fruitful avenues of detailed investigation.

Much work is still left unfinished. A better understanding of the
algebra of relationships between the computation graph and the program
graph is needed. Decision rules for priority assignment of multiple
processors are also needed and optimization methods must be developed
vhereby the best use of computing hardware can be permitted.
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