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J %cause t h e  computer i s  Seing used e f f e c t i v e l y  i n  many f i e l d s ,  
e s p e c i a l l y  i n  t h e  f i e l d s  of c i r c u i t  and system d.esign, a r e a l  motivation 
e x i s t s  f o r  eff ic iencx.  Many software packages such as SEPTRE:, ECAP, and 
NET 1 have proven t h e  point  t h a t  c i r c u i t  and system design engineering 
can be e f l e c t l v e l y  aided by i n t e l l i g e n t  'us'e of t h e  computer and t h i s  
use i s  l imi ted  not only by amilab1.e computing equipment bu-t a l s o  by 
methods of computing, methods which vary widely i n  e f f ic iency .  Elect-  
ronl.cs c i r c u i t  a n a l y s i s  programs of today a r e  very sophis t ica ted  and 
capable of analyzing l a r g e  networks. They veiy o f t e n  requi re  memory 
capaci ty  and computing t imes t h a t  t a x  t h e  resources  of a sm11 computing 
i n s t a l l a t i o n .  The use of such programs represents  a cos t  t h a t  can be 
measured 5y  a number of f a c t o r s  including computing t i m e  and memory 
capaci ty  and t h i s  cos t  must be compared with t h e  b e n e f i t  derived. 
programs a r e  l e s s  c o s t l y  than others  when p e r f o m i n g  t h e  same a n a l y s i s  
funct ion and some programs a r e  d e f i n i t e l y  unsui ted t o  p e r f o r x h g  c e r t a i q  
computations, not because t h e y  lack  t h e  capabi l i ty ,  but  'because t h e  
cos t  of doing these  computations i s  too great .  

Some 

3 i . s  7aper has been wr i t ten  i n  an attempt t o  discuss  t h e  problem 

-'ilk cost  of a coaputation as measured by t h e  t ime necessary for 
of ef f lc lency  of computation i n  t h e  d i g i t a l  computer i n  a conceptual. 
way. 
perfo:'xLng t n e  required opera-tions and t h e  memory capacity or other  
hard.c.r;l cz rqti;.remcn-ts. i s  t rea ted .  A method of a n a l y s i s  u t i l i z i n g  t h e  
graph zheGi-etical approach f o r  eval.uating t h e  c o s t  of computation i s  
introduced, This method is  new i n s o f a r  as it makes a l o g i c a l  d i s t lnc- t ion  
between The l i n e a r  graph of a computation and t h e  1:inear graph of a pro- 
gram an6 shows i n  g e n e r a l i t y  the importance of t h e  r e l a t i o n s h i p s  between, 
dhese l-,i.~o gi-aph models without going into any grea t  depth t o  descri-be 
t h e  algebra of t h e s e  re la t ionships ,  
s t r u c t u r e  such as c y c l i c  operations and v a r i a t i o n s  i n  t h e  types of 
opemt:i.ons such as determinis t ic  or probabi l . is t ic  a r e  discussed. The .., 

optimization problem i s  vieyed as  it r e l a t e s  t o  t h e  assj.gnnent of 
p r i o r i t i e s  among processors i n  a multiprocessing hardware configuration. 

-. 

A number of dist3.nctions i n  graph 
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~- Elements of t he  Cost of Coniputation 

I -  

. 

The fundamental and p re requ i s i t e  cos t s  of doing e l e c t r o n i c  c i r c u i t  
’ 

ana lys i s  and design by means of a d i g i t a l  computer i s  t h a t  cos t  assoc ia ted  
with the  a c q u i s i t i o n  of a co!npui;er of computing service;  however, t h i s  
acquis i - t ion or  ren-ta.1 cos t  oi“ ha.rdr!are w i l l  not be discussed here .  I n  
t h i s  paper, it w i l l  be assumed t h a t  d i g i t a l  computing equ-ipmnent i s  a v a i l -  
ab l e  and a motive t o  m k e  e f f i c i e n t  use of t h i s  equipment e x i s t s .  Tne 
more important elements of the cost  of conipu-ting depend upon (1) computing 
time, (2) computer capaci ty  and (3) computer e r r o r  p robab i l i t y .  

The computatlional t a s k  usual ly  begins with programming. Once the  
programming elffort. i s competed  and. infnrInat.ion for  p o g r a m  input. i s 
presented i n  some acceptable form t o  the  computer, a s e r i e s  of events  
t akes  p lace  which cons t i t u t e  the more important time i n t e r v a l s  i n  t h e  
computing process.  
by t h e  compu-ter and can be hj,d;en up i i i to  t h e  fol lowing genera l  ca tegor ies :  
(1) input  time, (2) cocil:.i.le time, (3) load time, (4)  run time, and ( 5 )  
output  time. This ‘is t h e  t i m e  t o  en te r  
t h e  problem i n t o  the  computer by m a n s  of whatever man machine i n t e r f a c e  
i s  ava i l ab le ,  be it te le type ,  punched cards,  ’graphics termi.na1, or t h e  l ike.  
It includes time spent i n  input system software manipulations - Compile 
t ime is t h a t  time necessary t o  t r a n s l a t e  the  language of t he  program i n t o  
symbolic machine language. I n  most computing systems a higher l e v e l  
language such as For t ran  I V  i s  compiled by means of a system funct ion  or 
u t i l i t y  program a.nd an  output,  t y p i c a l l y  a b inary  output,  i s  made a v a i l -  
a b l e  for t h e  computer or sonic intermediate s torage  means such as d i sk  or 
t a p e  meniory so t h a t  t he  coni-piled program ca,n be loaded i n t o  t h e  couiputer 
a t  an  another time. Load time is the  t i m e  necessary t o  input  the  compiled 
program i n t o  the  a c t i v e  computer memory. Loading i s  a l s o  done t y p i c a l l y  
by means of a. u t i l i t y ’  subroutine. 
loaded t h e  run time measures the a c t i v i t y  of the computer as it goes about 
a c t u a l l y  solving the  problem presented. Very o f t en  t h e  run t i m e  i s  a 
small f r a c t i o n  of t he  t o t a l  time spent i n  t h e  compu-cing system. Typical 
experience with a topologica l  c i r c u i t  a.nalysis programs of Calahan shows 
t h a t  compile and load t i m e  on an IBI;I 7040/7094 DCS system i s  of the  order  
of one t o  two minutes whereas run time seldom exceeds one-ha-lf minute. 
Output time is  t h a t  time necessary t o  present  answers i n  a form s u i t a b l e  
t o  t h e i r  end use. Input,  compile, load and output t imes can be considered 
as computer overhead. These times w i l l  be expended no matter how simple 
t h e  problem is. 
i n c r e a s e s ’ t o  a poin t  where it i s  equal  to or g rea t e r  than  the  overhead 
t i m e  as shown i n  Figure 1. 

These timc i n t e r v a l s  recur  each t i m e  a problem i s  solved 

Input  time i s  self-explanatory.  

Once a problem has been compiled and 

A s  t he  problem groiis i n  s i z e  t h e  magnitude of run t i m e  

/ 
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F i g w e  1 
Coiputing t i m e  as a funct ion of problem complexity 
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Every comnputer system i s  d i f f e ren t ,  t he re  a r e  no simple general  
p r inc ip l e s  vhich apply t o  a l l .  
c a p a b i l i t i e s  of p r i p h c r a l  equj.pment. Compile and load times depend 
upon t h e  language of the  program and the  soph i s t i ca t ion  of a u t i l i t y  
rout ine .  
depend on hardware configuration t o  soice ex ten t  but,  t o  a g r e a t e r  ex ten t ,  
it depends upon t h e  techniques used t o  perj!orni computation. 
time t h a t  forms t h e  center  of i n t e r e s t  i n  our discuss ion  of' coniputational 
e f f ic iency .  

Input  and output t imes depend upon t h e  

Run time on t h e  other  hand i s  amenable t o  analysis ,  it does 

It i s  t h i s  . 

ANALYSIS OF VIE COMPUTING TASK 

h s i c  Classes or̂  Coinpuier Gperations 

The i n s t r u c t i o n  r epe r to i r e  of a computer u sua l ly  includes a l l  ordinary 
a r i t hme t i c  operat ions : addi t ion,  substract ion,  mu l t ip l i ca t ion  and d iv i s ion  
and with the  a i d  of u t i l i t y  rout ines ,  d i f f e r e n t i a t i o n ,  i n t eg ra t ion  and 
o the r  similar operations.  . These are good examples of operat ions that can 
be c l a s s i f i e d  de te rminis t ic .  They are determinis t ic  i n  the  sense t h a t  
t hey  can be performed i n  a f i n i t e  length  of' time, which t i m e  reinains t h e  
scam or nea r ly  t h e  same vhenevcr t h e  operat ions are performed. Other 
opera t ions  n a t u r a l  t o  computing equipment and which f a l l  i n t o  t h e  c l a s s  
of de te rminis t ic  operat ions a r e  t h e  l o g i c a l  func t ions  "And.", "Or"  e t c .  
There i s  another c l a s s  of operat ions which have no uniquely defined 
a p r i o r i  outcome. The recursive c y c l i c  operat ions discussed below are 
such non-determinis t ic  operations.  .Coinputer branching operat ions.  such 
as "if" statements and ''go t o t r  or "jump"' s t a t c a e n t s  f a l l  i n t o  th3.s c l a s s .  
These are ca l l ed  p r o b a b i l i s t i c  operat ions because it is assumed t h a t  a 
f i n i t e  p robab i l i t y  e x i s t s  t h a t  such an operat ion w i l l  produce a given 
r e s u l t .  The run t i m e  mentioned earlier i s  composed of the  t i m e  necessary 

. . t o  perform a l l  opera t ions .  whether de te rminis t ic  o r  p r o b a b i l i s t i c .  I n  the  
a n a l y s i s  of run t i m e  f o r  sone problems, i t  may be more meaningful t o  view 

, t h e  computation process  as e n t i r e l y  p r o b a b i l i s t i c  or for  some computations 
it may be more advantageous t o  v i e w  . the opera-Lions as de te rmin i s t i c  or a 
combination of de t e rmin i s t i c  and p robab i l i s t i c .  A more d e t a i l e d  d i s -  
cussion of these  t o p i c s  w i l l  be given below. 

.' 

Cyclic  Operations 

P i e  computing t a s k  i s  seldom devoid of cyc l i c  operations.  Computing 
cyc le s  ,%re of two bas i c  types, recurs ive  and jndcxed. The recurs ive  cycle 
i s  a s e r i e s  of coin-guting operations repeated u n t i l  some t e s t  performed on 
the da ta  computed conforrns t o  8 t es t  c r i t e r i o n  at which poin t  t h e  opera- 
t i o n  i s  coniplcte. It i s  not  possible  beforehand t o  determine t h e  number 
of  cyc les  i n  the  operat ion without a t  first hiowing something about t he  
charac te r  of t h e  input  da t a  i n  t h e  cycle  of operations.  
cycle ,  on the o'cher nanG, is a f i x e d  nuniiier or r e p e i i t i o n s  of t he  bame 

The indexed 
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computing operations.  , T h i s .  number i s  determined a p r i o r i  and remains 
t h e  same f o r  a l l  evaluations of input data. 
multiply ;computing t imes by large l a c t o r s .  

Cyclic operat ions t y p i c a l l y  

13ackground 

There has been r e l a t i v e l y  l i t t l e  t h e o r e t i c a l  work on t h e  a n a l y s i s  of 
t h e  computing t a sk  reported i n  t h e  l i t e r a t u r e .  
p a r t l y  because of t h c  complexity of performing such a n a l y s i s  and p a r t l y  
because mathemt ica l  techniques have no-t been f u l l y  developed t o  a sufi 'i- 
c i e n t  degree t h a t  such ana lys i s  i s  e n t i r e l y  poss ib le  o r  p r a c t i c a l .  A t  
t h e  present  time, t h e  consensus of those  ac-Live i n  t h e  l i t e r a t u r e  seems 
to jnri-i ca-te t h a t  the theory  sf l i i ~ z a r  grz,phs 25:: and should be used as 
t o o l  f o r  analyzing t h e  computing t a s k .  Eknaghraby 111 has developed a 
mathematical technique'  f o r  &he a n a l y s i s  of general ized a c t i v i t y  networks 
such as those used i n  scheduling of business  operat ions;  however, much of 
t h i s  work i s  d i r e c t l y  applicalDle t o  t h e  a n a l y s i s  of t h e  computing task .  
Elmaghraby's work is.monumenta1 i n  t h e  sense thal; h i s  mathematics for t h e  
algebra of general ized a c t i v i t y  networks forms an excel lent  uni€ying 
concept which al.lows o ther  graph t h e o r e t i c a l  concepts such as t h e  s i g n a l  
flow graph and t h e  FERT ty-pe scheduling flow graphs t o  be t r e a t e d  as a 
s p e c i a l  case. P r i t s k e r  [31 and o t h e r s  have developed t h e  theory of t h e  
generalized a c t i v i t y  network espec ia l ly  as. it a p p l i e s  t o  t h e  scheduling 
problem. Martin and E s t r i n  have 'done some experimental work using computer 
models of mathematical computation processes t o  analyze such q u a n t i t i e s  
as t o t a l  computing t ime and the p r o b a b i l i t y  of occurence of a given 
output.  ' Karp [5 J and Marimou.nt [6 J have developed some use fu l  tech-  
niques f o r  t h e  ana lys i s  of t h e  computer programmink task which a r e  more 
o r  less appl icable  t o  t h e  ana lys i s  of t h e  e n t i r e  computational t a s k .  
There a re ,  however, important. d i s t i n c t i o n s  which w i l l  be discussed l a t e r .  
Analysis of t h e  computing t a s k  i s  a t  b e s t  a d i f f i c u l t  job and a job for 
which no a l t o g e t h e r  s u i t a b l e  mathematical techniques have been devel.oped. 
A conslderable amount of work needs t o  be done i n  t h i s  f i e l d  before  
s a t i s f a c t o r y  theory i s  developed a n d  before  it w i l l  be poss ib le  t o  accurate-  
l y  estimate t h e  cost  of a l l  computational t a s k s ,  I n  t h i s  s e c t i o n  w e  will 
discuss  some of t h e  theory already i n  exis tence along with some new appl i -  
ca t ions  of o l d e r  graph t h e o r e t i c a l  concepts and w e  s h a l l  at tempt t o  i n d i -  
c a t e  where poss ib le  those  areas  which could provide t h e  g r e a t e s t  b e n e f i t  
from f u t u r e  % h e o r e t i c a l  work, also a new d i s t i n c t i o n  between computation 
graphs and program graphs i s  made. 

This i s  probably so 

1 

~ 

Graphical Model of a Computation 

The f irst  s t e p  i n  t h e  ana lys i s  of  a computational t a s k  i s  t h e  genera- 
t i o n  of a l i n e a r  or ien ted  graph known also as d i rec ted  graph or digraph 
represent ing t h e  process.  

l i n e a r  or ien ted  graph. 

There are a t  l e a s t  ~ W G  b a s i c  metliod..; of 
a-ssrgfii_~g n;pvli-f;a-ti-vre and ~ ~ ~ ~ t i . t ~ t i ~ v ~ ~  f ~ f ~ ~ i ~ ~ t i ~ ~  to the eleaeiits of a 

The f i r s t  used by E s t r i n  and Turn [lo] Marimount 



! 

. 

c 

[ 6 ]  and o thers  ass iGns  a quant i ta t ive  eva1.uation t o  t h e  nodes or v e r t i c e s  
of the  graph and a precedence rela-Llonsh-ip o r  t h e  e s s e n t i a l  topol.oll;jr of 
t h e  graph t o  t h e  d i rec ted  edges. This pliil.osophy of assignment of ver tex 
and edge s igni f icance  i s  very d i f f e r e n t  from t h a t  used by K a r p  and o thers  
wherein t h e  edges a r e  assigned 8 quant i ta . t ive v a h e  such as execution time 
and probabi l i ty  and vei%iccs arc used t o  formulate t h e  topol.ogy and t o  
e s t a b l i s h  precedence., I n  a sequence of opera1;ions within a comnputational 
task ,  vei-ticec can be thought o f  as represent ing temporal milestones or t h e  
i n s t a n t  Vnat a par t i -cu lar  operation begins o r  ends. It i s  t h i s  type of 
ver tex and edge assignment t h a t  wi1.1 be considered exclusively i n  th3.s 
paper, p a r t l y  because a grea te r  body of theoreLica1 knowledge i s  a v a i l -  
able f D r  mvc,ml-,,- . A - C L  +I??.”,. 1.1- 

bjLup110 y l u l  U J I U O C  y u a l l t l e ~  and pBi-t:y b ~ c ~ i s e  of the -vdiie of 
such a graph as an a i d  t o  v isua l iz ing  t h e  operations contained within a 
computing t a s k .  
flow graph and t h e  graph used i n  communications theory t h u s  such a graph 
b e n e f i t s  by mathematical developments i n  t h e s e  r e l a t e d  f i e l d s .  

Such a graph corresponds more c l o s e l y  t o  t h e  s:i.gnal 

A t y p i c a l  s implif ied model of -the l i n e a r  or ien ted  graph of a computa- 
t i o n a l  t a s k  i s  given i n  Figure 2. 
rratheniatical formula f o r  computing t h e  magnitude of 6 vector  from i t s  
orthogonal components ( t h e  Pythagorean theorem). 

This Graph has  been derived from t h e  

‘Figure 2 
Linear Oriented Graph of a Computing Task 

Note t h a t  t h e  mathematicd formula e s t a b l i s h e s  c e r t a i n  precedence 
. re la t ionships ,  t h a t  is, t h e  squares nust be taken before  summing and each 
must be complete before  the f i n a l  square root  operal;ion i s  performed. 
Every computational t a s k ’ h a s  cer ta in  precedence re la t ionships  which remain 
i n v i o l a t e .  These a r e  adequately expressed i n  t h e  form of a l i n e a r  or iented 
graph and it i s  t h i s  graph which can be thought of as t h e  fundamental means 
of ana lys i s .  

The topology of a graph representing a coniiiutation i s  very d i f f e r e n t  
froin the topol.ogy of a graph representing a computer program as w i l l  b e  
demonstrated by wri t ing a simple program f o r  t h e  funct ion given i n  Figure 
2. VIZ: 
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Program e gent 

a. 

b.  

C.  

d. 

e. 

f .  

fetch.  X 

square X and hold a 

a 

f e t c h  X,, 
square X,, and hold 

sum X + Xb2, and ho1.d a 

take'  square root  of X + X,,* a 
I n  t h i s  simple program, a l l  events  ta,ke p lace  i n  sequence and t h e  

e n t i r e  computing operat ion can be represented as shown i n  Figure 3. 

P A  FI NlSH a b d 
5 TART O-~IX+----~-G~QQ--- 

Figure 3 
Linear Oriented Graph of  t h e  Computer Program of t h e  Fythagorean Theorem 

A set of ru l e s  or an algebra could be developed for generat ing t h e  
program graph from t h e  computation graph i n  a systematic way. 
wmld be great i n  providing a systematic way whereby t h e  precedence rela- 
t i onsh ips  could be preserved and t h e  t o t a l  computing c o s t s  determined a 
p r i o r i .  For t h e  more complex programing t a s k s  where a multiprocessing 
c a p a b i l i t y  exTsts t h e  program graph can be used t o  evaluate  e f f e c t s  of 
p a r a l l e l  computing. The program graph for t h e  simultaneous use  of two 
processors  f o r  t h i s  example would be topologTcally i d e n t i c a l  t o  t h e  
computation graph and t h e  t a s k  would t ake  l e s s  t i m e  as a r e s u l t .  From, 
t h i s  it should be c l e a r  t h a t  the  program graph i s  dependent not  only on, 
t h e  topology of t h e  computation graph but a l s o  on t h e  capabil . i ty of 
processing hardware. 
on t h e  problems of optimum multiprocessing. 

The value 

Additional research i s  needed i n  t h i s  a r e a  e spec ia l ly  

Signif icance of Edges, Vertices,  Paths  and Loops 

So far, t h e  development of t h i s  method of ana lys i s  by means of t h e  
graph model of a computational t a s k  has been thoroughly general  i n  t h a t  
it app l i e s  equal ly  wel l  t o  schedules, s i g n a l  f low graphs and any o the r  
process  which depends on a quan t i t a t ive  edge nomenclature and precedence 
r e l a t ionsh ips  between edges but i n  t h e  ana lys i s  of t h e  computation t a s k  
w e  s h a l l  a sc r ibe  t h e  following meaning t o  edges, ve r t i ce s ,  paths,  and 
loops : 

1. EZges represent  computing operat ions and t h e  weight or value 
assigned t o  an edge s h s i i  represeni  Yne s e t  of q u a n t i t i e s  Ynat 
measure t h e  computing 'operat ion such as probab i l i t y  o€ execution, 
execution time, memory requirement, chance of e r ro r ,  e t c .  

. 
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2. Vert ices  as mentiohed e a r l i e r  represent. the beginning and end 
of an operation. 

. 3.  Paths rcpresent  a sequence of operat ions with weights or values 
computed as j o i n t  p robab i l i t i e s ,  t o t a l  t h e  of execution and 
t o t a l  chance of error, e t c .  f o r  the edges t raversed.  

4. Loops represent cyc l ic  operat ions or a recur r ing  set  of iden-ti- 
c a l  operations.  
ind ica ted  earlier under cyc l i c  ,operations. 

Recursive and indexed loops are poss ib le  as  

To i l l u s  h a t e  these re la t ionships ,  w e  w i l l  use another s impl i f ied  
example of a computing t a sk  as shown i n  Figure 4 for a graph containing 
a de terminis t ic  cycl e .  

AEPEAT i'l T I M E S  

C 

F E T C H  A 
A 0  e 

F E T C H  A 
A 0  e P 

t Figure 4 
Computation Graph fo r  the Expression Y = A Xi + I3 

i= I 

The quant i ta t ive  inf'ormation associated with the  edges of t h e  graph of 
Figure 5 i s  as follows: 

Edge 
a 
b 

' d  
e 
f 
t5 

- 

C 

Probabi l i ty  
Operation Time ( sec)  of occurrence 

1 sec. 1 .  
2 1 
3 1 
2 1 
1 1 
1 1 .  
n (a multiplying f a c t o r )  1 

In order t o  evaluate  t h i s  graph quant i ta t ive ly ,  it w i l l  f i r s t  be 
necessary t o  discover a l l  cycl ic  operat ions or loops, and transform 
these  i n t o  acyc l i c  equivalenis.  Then, a pr0gra.m graph can be developed 
on the  b a s i s  of some f ixed  compting hardware configurat ion.  From t he  
program graph w r i l l  come the  r e s u l t s  desired i n  t h e  form of the  cost  of 
t h e  computation task'  measured in  seconds and the p robab i l i t y  of occur- 
rence of t he  output Y. Clearly, i n  t h i s  example, the  output Y i s  a 
cer.i::i35 ri-i;y ?te!c:a~j.s~ +he n r n h h i  1 i ty ~f o e r . i j - r r ~ f i ~ e  of pa& edge i ~ 1 ~ 2 - j . f : y ~  

c- - --- - 
The cyc l i c  t o  acyc l i c  transformation i n  t h i s  case simply i n f e r s  t h a t  

edges a m d  b are replaced by edges a'  and b' having operat ion times n . ,  * 



. .  
I times l a r g e r  t han  t h e  or ie ; inal  operat ion times. 

han-lware, t he  sfnglc path graph of Figure 5 represcilbs t h e  des i r ed  r e s u l t .  
Martin and E s t r i n  [8 1 have discussed cyc l i c  t o  acyc l i c  t ransformations of 
a program graph i n  a general  way. 

For serial compu-ting 

S t a r t  a '  b '  e C P d f i n i s h  

Edge 
a '  
b '  . 

d 
e 
f 
e 

C 

P r o b a b i l i t y  of 
0p;;t:o; Time occurrence 

1 

2 1 
3 1 
2 1 
1 1 

0 

n(2)  = 2n 1 

0 (not  i n  t h e  graph) 

Figure 5 L Single Path Program Graph of t h e  Function Y = A 

n 
P 

J.: I 

Tota l  computing t i m e  i s  seen t o  be (3n -+ 8 sec )  t h e  sum of a l l  opera- 
& 

t i o n  t i m e s  from start  t o  f i n i s h  and t h e  p robab i l i t y  of occurrence of 
output i s  1, t h e  j o i n t  p robab i l i t y  of occurrence of a l l  edges. 

If hardware v a r i a t i o n s  gre poss ib l e  so  t h a t  t h e  grea'kest amount of  
pa ra l l e l i sm i n  computing i s  allowed, t h e  minimum computing t ime can be 
found t o  be propor t iona l  t o  t h e  length  of t h e  longes t  pa th  of Figure 5 
a f t e r  cyc l i c  t o  acyc l i c  transformation; namely, a ' ,  b ' ,  c, d or (311 + 5)  
seconds. These r e s u l t s  a r e  t r u e  i n  general ,  t h a t  is, t h e  sho r t e s t  possi-  
b l e  t i m e  f o r  computation i s  t h e  maxiinum length path from start t o  f i n i s h  of 
t h e  computation graph and t h e  longest i s  t h e  sum of a l l  operat ion t imes 
after cyc l i c  t o  .acycl ic  t ransformation has been considered. 

The Probabi l i  s t . ic  Computation 

Consider t h e  following p r o b k b i l i s t i c  computation and the assoc ia t ed  
graph shown i n  Figure 6. 

A X + B  r-$. ( Y U  + B < f o r  X =O 

f o r  X X 



i FETCH I3 
b B o  

A 

X 

C 

Y 

Figure 6 
Graph of a P robab i l i s t i c  Coqmtation Process 

I n  t h i s  graph, Vertex 6 represenTs t h e  stayt of a branch or tes t  operation, 
t h e  outcom of which depends on t'ne mngnitude of X. 
a.n edge which i s  t raversed  only i f  X 59. 
which i s  t raversed  only i f  X >o. 
p r o b a b i l i t y  0.5 as indica ted  ii t h e  following table: 

Edge f represents  * 

And et?ge g represents  an edge 
To these  edges i s  assigned t h e  f i n i t e  

Edge No. 
a 
b 

d 
e 
f 
t3 
h 
1 

C 

j 
k 

Operation Time 
1 
1 .  
1 
1 
1 
2 
2 
4 
4 
1 
8 

Probab i l i t y  of 
Oc cur r en c e 

1 
1 
1 
1 
1 

, 

' 5  
95 
1 
1 
1 
1 

The program graph of t h i s  funct ion using s e r i a l  computing hardware i s  not 
a s i n g l e  path b u t  two a l t e r n a t e  pa ths  as shown i n  Figure 7'. 

Figure 7 
Program Graph €or a Probab i l i s t i c  Function of Computation 



The avemge time of conputation for a randoni va r i a t ion  of values of 
x i s  computed i n  the  fo310wing way: 

' a v '  = t e -i r f (t  f -1- t a 4- t h - l . t b  9- t . )  J 

, -  

where t represents  opcration time and I? represents  p robab i l i t y  of 
occurrence of an e ~ e .  

= 1 + . 5 ( 2 + 1 + 4 + 1 + 1 )  

+ .5 ( 2  -I- 1 + 4 4- 1 + 8) 

The p robab i l i t y  of output i s  the sum of the  j o i n t  p r o b a b i l i t i e s  through 
each path:  

< 
P = 0.5  + 0.5 = 1 Y 

By sh i l a r  means, any number of p r o b a b i l i s t i c  operat ions can be analyzed 
and the  p robab i l i t y  of outpu$ along with average execution t-imes can be 
developed . 

llnne problem of optimization -of a computa-tlion process i n  a d i g i t a l  
conputing system includes,  but. is c e r t a i n l y  not l imi ted  t o  the  c o s t s  
of computation as measured by computing t.in:e, hardware requirements and 
e r r o r  p r o b a b i l i t i e s .  
may vary from one computation t o  another are s a t i s f i e d .  i n  one case 
opt imizat ion may mean allowing a cer- ta in  conputation t o  be perfwmed 
with a minimum memory requirement i n  t h e  hardware, whereas i n  another 
case, it may be required t o  reduce the  t o t a l  error probabi l i ty .  One 
minimization problem nlay d e a l  with a completely serial s e t  of opcra- 
t i o n s  whereas another may involve mul t ip le  processors.  
genera l  statements which can be made about t h e  problem of optimization 
b u t  one which does apply i n  most cases  i s  t h i s :  
make e f f i c i e n t  use of the  computing hardware t o  s a t i s f y  a primary objec- 
t i v e  such as speed or r e l i a b i l i t y ' t r h i l e  at. t h e  same time s a t i s f y i n g  se- 
condary objec t ives  such as accuracy. There c e r t a i n l y  are exceptions t o  
t h i s  gene ra l i t y  but  our a t t en t ion  i n  t h i s  paper has been d i r ec t ed  toward 
those  appp1icat;ions where it appl ies .  
computing i n  a systein which has more than enough bas ic  computing ca2aci.ty. 
i n  such a system, it might. be des i rab le  t o  minimize the  t o t a l  program- 
ming e f fo r t .  by using r e l a t i v e l y  i n e f f i c i e n t  but easy t o  program subroutines.  
"his prablem and o the r s  of t h e  ty-pe can be considered outs ide of t h e  
class Gf problems needing opt.iniization. 

Optimization i n f e r s  t h a t  c e r t a i n  c r i t e r i a  which 

There are few 

A computation should 

One poss ib le  exception would be 

-. 
.* 

. . I  
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The fi-rst s t e p  i n  any prD-d..rn of  op-t;irnizotion i s  purely mathe- 
nm-Licnl. 
ca t ion  and s imt ln r  rtieans t o  e;ulira:il;ee -i'nxvt t h e  answers which a r e  sought 
a r e  a r r ived  at mathematically i n  -L:he most expeditious vay. 
o r  more methods of mathemt ica l  a.nnlysis f o r  the same probl.em e x i s t ,  it 
mzy be necessary t o  analyze each :wiihod r igorously before it can be 
determined which i s  ti?e more e f f i c i e n t .  
mathemt ica l  s impl i f ica t ion  i s  factor ing.  
a nunit7er o€ t e m s  i n  an al~gebrafc e>qression,  it i s  conputationally more 
e f f i c i e n t  t o  ex t rac t  t h i s  factor ,  compute .%lie indicated intermediate 
result, and mu1ti.pl.y t h e  intermediate resuYG by t h e  coimiion f a c t o r  before  
proceeding. 

It involves. the well-known techniques of a lgebraic  simplif i- 

\There two 

A very simple example of 
If a common f a c t o r  e x i s t s  i n  

Vany similar opemt-ions a n 3  transformations are possible .  

hf't.er one 5 s  Zssured thai  tt:e ~ i ~ s l i e s t  pr,s:t;lc pa-iiheiy,~y;ical 
expression f o r  a given comprtaticnal process i s  achieved, it i s  then 
necessary t o  evaluate t h i s  process q u a n t i t a t i v e l y  and qual . i ta t ively by 
means of t h e  conputation gFaph. The coxputation graph i t s e l f  may poin t  
out overlooked p o s s i b i l i t i e s  f o r  a lgebraic  s impl l f ica t ion .  When t h e  
graph has  been formed, a n  analysis  of t h e  graph may then be made. 
S e r i a l  chains of non-branching edges a r e  then  reduced t o  s ing le  edge 
equ-ivalents. Also a l l  loops or cycl ic  operations a r e  found. Then, 
t h e  graph i s  transformed i n t o  the equivalent a c y c l i c  reduced graph. 
This allows an even more accurate i n t u i t i v e  understanding of t h e  topology 
of t h e  computation graph. . .  

The next and most c r i t i c a l  s'iep i n  t h e  optimization process i s  t h e  
formation of a program graph f o r  a compting system. 
computing capabil-ity;, t h e  problex i s  considerably reduced. I n  f a c t ,  
s ince all necessary operations must be pel-formed i n  sequence, c e r t a i n  
general. f e a t u r e s  of t h i s  type corquting process can be discerned d i r e c t l y  
from t h e  computation graph. For Instance,  t h e  t o t a l  time of computing 
using serial processing w i l l  be exact ly  t h e  sum of a l l  computing t imes 
evaluated using t h e  computation gi-aph alone. This of course i s  not t h e  
case with p a r a l l e l  coiaputing hard-mre. A p a r a l l e l  computation requi res  
considerably more e f f o r t  t o  optirLze. 
an urgency c r i t e r i o n  f o r  optimization by an essen-tially trial and e r r o r  
process. 
operation i n  que'stion t o  t h e  end of t h e  conprbati-on. 
i s  being developed f o r  p a r a l l e l  processors and t h e  c r i t e r i o n  of perfor-  
mance i s  m:ini.riiwn computing time, one can inspect  t h e  compu-tation graph 
a n a l y t i c a l l y  t o  f i n d  t h e  longest poss ib le  independent sub-graph which 
can be assigned t o  one of t h e  processors. 
s e r i a l  chain of operations'  t h a t  can be performed simultaneously with t h e  
o t h e r  operations of t h e  cr::iputation and within the l imitpat ions of t h e  
a v a i l a b l e  hardware. 

With only serial  

Martin and Estr in ,  [8] have proposed 

The urgency c r i t e r i o n  i s  a measure of path lengths  from an 
If a program graph 

This sub-graph must be a 

Figure 2 i s  a simple example of a computation graph which could 
be programmed e f f e c t i v e l y  i n  . two p a r a l l e l  processors reducing t o t a l  

The program graph i n  t h i s  instance would be i d e n t i c a l  t o  Figure 2, t h e  
computation graph. 

csiputing time bjr smaller of t h e  two t-;;les f +  + tb) (t -+ + 1 
bd/ ' "a C 

If a computation graph has  no p a r a l l e l  paths  then  it __, 
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I s  nc;‘; possible  t o . r e d u c e  t o t a l  cornpdtation t ime by t h e  use of mult iple  
processors. 
than t h e r e  a r e  paral . lel  processosrs ava-ilable, t h e  b e s t  assignment oZ t h e  
a v a i h b l e  eqifipnen’t 1.rould be t h a t  asslignmcn-1; which produces t h e  most 
near ly  equal. workload f o r  each of the processors.  
rules which could be used i n  t h e  assignment of p r i o r i t i e s  for developing 
the program graph of a mult iple  processor system and t o  our knowledge no 

reduction beyond t h e  c y c l i c  t o  acycl ic  transform3tion m y  be a g r e a t  

contained i n  a s i n g l e  non-branching chain are coiiibined i n t o  an equivalent 
s ing le ,  edge with t h e  wet ght j  ng f a c t o r s  computed from t h e  combination of 
weighting f a c t o r s  found i n  t h e  o r i g i n a l  chain, a simpler and more r e a l i s -  
t i c  i r l i e r ~ p ~ e t ~ i ; i o i i  of t h e  coinp?;‘iing r z q ~ i r z x c n t  is possible. IC -1:hLS 
reduced forin of graph, decisions f o r  p r i o r i t y  assignment may be made 
l a r g e l y  on t h e  b a s i s  of conrparison between sets of s ingle  edges within 
t h e  gra.ph. 

On t h e  other hand, i f  iriore p a r a l l e l  paths  are possible  
, .  

There are many poss ib le  
’ ,-- 

. comple-te optimal solut ion t o  t h t s  problem has been proposed. Graph 

I help  i n  t h e  p r i o r i t y  assignment. If a l l  edges of a computation graph 

The opti.m>.zation problem i s  c e r t a i n l y  not a simple piwblem, but it 
i s  exceedingly interestl ing espec ia l ly  where t h e  mult iple  processing 
c a p a b i l i t y  e x i s t s .  Once t h e  c r i t e r i a  f o r  optimization have been estab-  
l i shed ,  then c e r t a i n  methods based on t h e  ana lys i s  of t h e  computation and 
program graph a r e  poss-ible t o o l s  f o r  optimization. The computation graph 
sets t h e  scene and ind ica tes .  what pa.rallelS.sm i f  any i s  possible .  The 
graph reduction by cyc l ic  t o  acycl ic  transformation and t h e  reduction of 
serial  non-branching chains t o  s ing le  elements considerably s i m p l i f i e s  
the ana lys i s .  
t e c h n i c a l  t e r r i t o r y  which needs f u r t h e r  developiiient I) 

Here t h e r e  i s  cer ta in ly  a l a r g e  a r e a  of unexplored 

SUMMARY AND CONCLUSIOXS 

The purpose of t h i s  paper was t o  d i scuss  t h e  problem of e f f i c i e n c y  
i n  t h e  d i g i t a l  computer, considering t h e  s t r u c t u r e  of cos t  of compkation. 
Some ideas  r e l a t i n g  t o  methods of a n a l y s i s  of computational processes and 
methods of reducing computing cost were t r e a t e d  i n  a general  and conceptual 
manner emphasizing possible  f r u i t f u l  avenu:s of d e t a i l e d  inves t iga t ion .  

Much work i s  s t i l l  l e f t  unfinished. A b e t t e r  understanding of t h e  
a lgebra  of re la t ionships  between the  computation graph and t h e  program 
graph i s  needed. 
processors are a l s o  needed and optimization methods must be developed 
whereby t h e  best use  of computing hardware can be permitted. 

Decision rules f o r  p r i o r i t y  assignnient of mult iple  
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