117 research outputs found

    The next era of renal radionuclide imaging: novel PET radiotracers

    Get PDF
    Although single-photon-emitting radiotracers have long been the standard for renal functional molecular imaging, recent years have seen the development of positron emission tomography (PET) agents for this application. We provide an overview of renal radionuclide PET radiotracers, in particular focusing on novel 18F-labelled and 68Ga-labelled agents. Several reported PET imaging probes allow assessment of glomerular filtration rate, such as [68Ga]ethylenediaminetetraacetic acid ([68Ga]EDTA), [68Ga]IRDye800-tilmanocept and 2-deoxy-2-[18F]fluorosorbitol ([18F]FDS)). The diagnostic performance of [68Ga]EDTA has already been demonstrated in a clinical trial. [68Ga]IRDye800-tilmanocept shows receptor-mediated binding to glomerular mesangial cells, which in turn may allow the monitoring of progression of diabetic nephropathy. [18F]FDS shows excellent kidney extraction and excretion in rats and, as has been shown in the first study in humans. Further, due to its simple one-step radiosynthesis via the most frequently used PET radiotracer 2-deoxy-2-[18F]fluoro-d-glucose, [18F]FDS could be available at nearly every PET centre. A new PET radiotracer has also been introduced for the effective assessment of plasma flow in the kidneys: Re(CO)3-N-([18F]fluoroethyl)iminodiacetic acid (Re(CO)3([18F]FEDA)). This compound demonstrates similar pharmacokinetic properties to its 99mTc-labelled analogue [99mTc](CO)3(FEDA). Thus, if there is a shortage of molybdenum-99, Re(CO)3([18F]FEDA would allow direct comparison with previous studies with 99mTc. The PET radiotracers for renal imaging reviewed here allow thorough evaluation of kidney function, with the tremendous advantage of precise anatomical coregistration with simultaneously acquired CT images and rapid three-dimensional imaging capability

    Association of polymorphisms in inflammatory cytokines encoding genes with severe cases of influenza A/H1N1 and B in an Iranian population

    Get PDF
    Background: The increased levels of blood cytokines is the main immunopathological process that were attributed to severe clinical outcomes in cases of influenza A, influenza B and people with influenza-like illness (ILI). Functional genetic polymorphisms caused by single nucleotide polymorphisms (SNPs) in inflammatory cytokines genes can influence their functions either qualitatively or quantitatively, which is associated with the possibility of severe influenza infections. The aim of the present case-control study was to investigate the association of polymorphisms in inflammatory cytokines genes with influenza patients and ILI group in an Iranian population. Methods: Total number of 30 influenza B, 50 influenza A (H1N1) and 96 ILI inpatient individuals were confirmed by Real-time RT-PCR and HI assays. The genotype determination was assessed for defined SNPs in IL-1β, IL-17, IL-10 and IL-28 genes. Results: The frequencies of the IL-1β rs16944 (P = 0.007) and IL-17 rs2275913 (P = 0.006) genotypes were associated with severe influenza disease, while the frequencies of IL-10 rs1800872 and IL-28 rs8099917 were not associated with the disease (P > 0.05). Also, the absence of A allele in IL-17 rs2275913 SNP increased the risk of influenza A (H1N1) infection (P = 0.008). Conclusions: This study demonstrated that influenza A-(H1N1) and B-infected patients and also ILI controls have different profiles of immune parameters, and individuals carrying the specific cytokine-derived polymorphisms may show different immune responses towards severe outcome

    Integrative Analysis of Circulating Metabolite Profiles and Magnetic Resonance Imaging Metrics in Patients with Traumatic Brain Injury

    Get PDF
    Recent evidence suggests that patients with traumatic brain injuries (TBIs) have a distinct circulating metabolic profile. However, it is unclear if this metabolomic profile corresponds to changes in brain morphology as observed by magnetic resonance imaging (MRI). The aim of this study was to explore how circulating serum metabolites, following TBI, relate to structural MRI (sMRI) findings. Serum samples were collected upon admission to the emergency department from patients suffering from acute TBI and metabolites were measured using mass spectrometry-based metabolomics. Most of these patients sustained a mild TBI. In the same patients, sMRIs were taken and volumetric data were extracted (138 metrics). From a pool of 203 eligible screened patients, 96 met the inclusion criteria for this study. Metabolites were summarized as eight clusters and sMRI data were reduced to 15 independent components (ICs). Partial correlation analysis showed that four metabolite clusters had significant associations with specific ICs, reflecting both the grey and white matter brain injury. Multiple machine learning approaches were then applied in order to investigate if circulating metabolites could distinguish between positive and negative sMRI findings. A logistic regression model was developed, comprised of two metabolic predictors (erythronic acid and myo-inositol), which, together with neurofilament light polypeptide (NF-L), discriminated positive and negative sMRI findings with an area under the curve of the receiver-operating characteristic of 0.85 (specificity = 0.89, sensitivity = 0.65). The results of this study show that metabolomic analysis of blood samples upon admission, either alone or in combination with protein biomarkers, can provide valuable information about the impact of TBI on brain structural changes

    Emerging advances of nanotechnology in drug and vaccine delivery against viral associated respiratory infectious diseases (VARID)

    Get PDF
    Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    The ER Stress/UPR axis in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis

    Get PDF
    Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented

    Visual and Semiquantitative Accuracy in Clinical Baseline 123I-Ioflupane SPECT/CT Imaging

    Get PDF
    PURPOSE: We aimed to (a) elucidate the concordance of visual assessment of an initial I-ioflupane scan by a human interpreter with comparison to results using a fully automatic semiquantitative method and (b) to assess the accuracy compared to follow-up (f/u) diagnosis established by movement disorder specialists. METHODS: An initial I-ioflupane scan was performed in 382 patients with clinically uncertain Parkinsonian syndrome. An experienced reader performed a visual evaluation of all scans independently. The findings of the visual read were compared with semiquantitative evaluation. In addition, available f/u clinical diagnosis (serving as a reference standard) was compared with results of the human read and the software. RESULTS: When comparing the semiquantitative method with the visual assessment, discordance could be found in 25 (6.5%) of 382 of the cases for the experienced reader (ĸ = 0.868). The human observer indicated region of interest misalignment as the main reason for discordance. With neurology f/u serving as reference, the results of the reader revealed a slightly higher accuracy rate (87.7%, ĸ = 0.75) compared to semiquantification (86.2%, ĸ = 0.719, P < 0.001, respectively). No significant difference in the diagnostic performance of the visual read versus software-based assessment was found. CONCLUSIONS: In comparison with a fully automatic semiquantitative method in I-ioflupane interpretation, human assessment obtained an almost perfect agreement rate. However, compared to clinical established diagnosis serving as a reference, visual read seemed to be slightly more accurate as a solely software-based quantitative assessment

    Admission Levels of Total Tau and β-Amyloid Isoforms 1–40 and 1–42 in Predicting the Outcome of Mild Traumatic Brain Injury

    Get PDF
    Background: The purpose of this study was to investigate if admission levels of total tau (T-tau) and β-amyloid isoforms 1-40 (Aβ40) and 1-42 (Aβ42) could predict clinical outcome in patients with mild traumatic brain injury (mTBI). Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13] recruited in Turku University Hospital, Turku, Finland were included in this study. Blood samples were drawn within 24 h of admission for analysis of plasma T-tau, Aβ40, and Aβ42. Patients were divided into computed tomography (CT)-positive and CT-negative groups. The outcome was assessed 6–12 months after the injury using the Extended Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8) or incomplete (GOSE < 8) recovery. The Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) was also used to assess mTBI-related symptoms. Predictive values of the biomarkers were analyzed independently, in panels and together with clinical parameters. Results: The admission levels of plasma T-tau, Aβ40, and Aβ42 were not significantly different between patients with complete and incomplete recovery. The levels of T-tau, Aβ40, and Aβ42 could poorly predict complete recovery, with areas under the receiver operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort, there was a significant negative correlation between the levels of T-tau and ordinal GOSE score (Spearman ρ = −0.231, p = 0.018). In a multivariate logistic regression model including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time from injury to sampling, and CT findings, none of the biomarkers could predict complete recovery independently or together with the other two biomarkers. Plasma levels of T-tau, Aβ40, and Aβ42 did not significantly differ between the outcome groups either within the CT-positive or CT-negative subgroups. Levels of Aβ40 and Aβ42 did not significantly correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly correlated with ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The levels of T-tau, Aβ40, and Aβ42 were not correlated with the RPCSQ scores. Conclusions: The early levels of T-tau are correlated with the outcome in patients with mTBI, but none of the biomarkers either alone or in any combinations could predict complete recovery in patients with mTBI

    Heart and systemic effects of statin pretreatment in a rat model of abdominal sepsis. Assessment by Tc99m-sestamibi biodistribition

    Full text link
    PURPOSE: To evaluate the heart and the Tc-99m-sestamibi biodistribution after statin pretreatment in a rat model of abdominal sepsis. METHODS: Twenty-four Wistar rats were randomly distributed into four groups (n=6 per group): 1) sepsis with simvastatin treatment, 2) sepsis with vehicle, 3) sham control with simvastatin and 4) sham control with vehicle. 24 hours after cecal ligation and puncture rats received 1.0MBq of Tc-99m-sestamibi i.v. 30min after, animals were euthanized for ex-vivo tissue counting and myocardium histological analysis. RESULTS: Myocardial histologic alterations were not detected 24 hours post-sepsis. There was significantly increased cardiac Tc-99m-sestamibi activity in the sepsis group with simvastatin treatment (1.9±\pm0.3%ID/g, p<0.001) in comparison to the sepsis group+vehicle (1.0±\pm0.2% ID/g), control sham group+ simvastatin (1.2±\pm0.3% ID/g) and control sham group (1.3±\pm0.2% ID/g). Significant Tc-99m-sestamibi activity in liver, kidney and lungs was also detected in the sepsis group treated with simvastatinin comparison to the other groups. CONCLUSIONS: Statin treatment altered the biodistribution of Tc-99m-sestamibi with increased cardiac and solid organ activity in rats with abdominal sepsis, while no impact on controls. Increased myocardial tracer activity may be a result of a possible protection effect due to increased tissue perfusion mediated by statins

    Cerebral Microbleeds and Structural White Matter Integrity in Patients With Traumatic Brain Injury-A Diffusion Tensor Imaging Study

    Get PDF
    Diffuse axonal injury (DAI) is a common neuropathological manifestation of traumatic brain injury (TBI), presenting as traumatic alterations in the cerebral white matter (WM) microstructure and often leading to long-term neurocognitive impairment. These WM alterations can be assessed using diffusion tensor imaging (DTI). Cerebral microbleeds (CMBs) are a common finding on head imaging in TBI and are often considered a visible sign of DAI, although they represent diffuse vascular injury. It is poorly known how they associate with long-term white matter integrity. This study included 20 patients with TBI and CMBs, 34 patients with TBI without CMBs, and 11 controls with orthopedic injuries. DTI was used to assess microstructural WM alterations. CMBs were detected using susceptibility-weighted imaging (SWI) and graded according to their location in the WM and total lesion load was counted. Patients underwent SWI within 2 months after injury. DTI and clinical outcome assessment were performed at an average of eight months after injury. Outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The Glasgow Coma Scale (GCS) and length of post-traumatic amnesia (PTA) were used to assess clinical severity of the injury. We found that CMB grading and total lesion load were negatively associated with fractional anisotropy (FA) and positively associated with mean diffusivity (MD). Patients with TBI and CMBs had decreased FA and increased MD compared with patients with TBI without CMBs. CMBs were also associated with worse clinical outcome. When adjusting for the clinical severity of the injury, none of the mentioned associations were found. Thus, the difference in FA and MD is explained by patients with TBI and CMBs having more severe injuries. Our results suggest that CMBs are not associated with greater WM alterations when adjusting for the clinical severity of TBI. Thus, CMBs and WM alterations may not be strongly associated pathologies in TBI

    The Integrin Receptor in Biologically Relevant Bilayers: Insights from Molecular Dynamics Simulations

    Get PDF
    Integrins are heterodimeric (αβ) cell surface receptors that are potential therapeutic targets for a number of diseases. Despite the existence of structural data for all parts of integrins, the structure of the complete integrin receptor is still not available. We have used available structural data to construct a model of the complete integrin receptor in complex with talin F2–F3 domain. It has been shown that the interactions of integrins with their lipid environment are crucial for their function but details of the integrin/lipid interactions remain elusive. In this study an integrin/talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin/talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2–F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction across cell membranes
    corecore