390 research outputs found
Coordination Compounds of Alkali Metal Halides and Racemic Diaryl Diamines
Solid alkali metal coordination compounds of water soluble alkali metal salts of monobasic acids and racemic diamines are made by contacting an aqueous solution of the alkali metal salts with a solution of a racemic diamine compound of the formula wherein Ar in an aryl ring, X is alkyl and Y is alkyl or hydrogen, the X\u27s being different from the Y\u27s. The formation of the new coordination compounds provides a method for separation of alkali metal from alkaline earth metals
Insights about the ability of folate based supramolecular gels to act as targeted therapeutic agents
With the aim to obtain targeted chemotherapeutic agents, imidazolium and ammonium-based folate salts were synthesized. Their photophysical behavior was investigated both in buffer and buffer/DMSO solution as well as in solid phase, performing UV-vis and fluorescence investigations. Properties of the aggregates were also analyzed by dynamic light scattering. Gelation ability of the salts was analyzed in biocompatible solvents, and gel phases obtained were characterized by determining critical gelation concentrations and gel-solution transition temperatures. Insights about gelator interactions in the tridimensional network were also gained performing ATR-FTIR investigation. Properties of soft materials were further analyzed performing rheology measurements, scanning electron microscopy, fluorescence and resonance light scattering investigations. Antiproliferative activity of organic salts was tested towards two breast cancer cell lines, expressing different levels of folate receptor, namely MDA-MB-231 and MCF-7, and a normal epithelial cell line, like h-TER T-RPE-1, by using MTT assay. Dichlodihydrofluorescein acetate test was performed to verify the role of oxidative stress in cell death. Finally, antiproliferative activity was also evaluated in gel phase, to verify if salts were able to retain biological activity also after the entrapment in the gelatinous network. Results collected evidence that folate based organic salts were able to behave as targeted chemotherapeutic agents both in solution and gel phase, showing uptake mechanism and selectivity indexes that depend on both cancer cell line nature and salt structure
Regional Interest Rate Pass-Through in Italy
Regional interest rate pass-through in Italy, Regional Studies. This paper estimates the pass-through and speed of adjustment of Italian regional interest rates to changes in the money market rate for the period 1998Q1–2009Q4. The main findings suggest that the mark-ups for the lending rates that banks charge are generally higher in the South than in the North. Moreover, the empirical results indicate that the pass-through tends to be longer in Southern regions. Furthermore, little support is found for the hypothesis that regional banks react asymmetrically when adjusting their loan rates when these are above or below equilibrium levels, but some evidence supporting an upward rigidity in the regional deposit rates is detected
Different techniques of surgical left atrial appendage closure and their efficacy. a systematic review
Background: Atrial fibrillation has been identified as an independent risk factor for thromboembolic events. Since 1948 different surgical techniques have described the feasibility and the rationale of left atrial surgical appendage closure. The aim of this systematic review is to evaluate the reported patency rates of different surgical techniques. Methods: This systematic review was conducted according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Two independent investigators searched the PubMed, Scopus, Web of Science, Cochrane Central Register of Controlled Trials, and OVID & REG; (Wolters Kluwer, Alphen aan den Rijn, Netherlands) to identify relevant studies. Consecutively, a PICO (Population, Intervention, Comparison and Outcomes) strategy assessment of literature was performed to search eventual other relevant studies that may have been ignored. Results: A total of 42 studies were included in our analysis. The total number of patients who underwent surgical left atrial appendage closure was 5671, and in 61.2% an imaging follow up was performed, mostly with transesophageal echocardiographic evaluation. Success rate for the different techniques was: Clip deployment 98%; Lariat procedure 88%; Surgical amputation 91%; Endocardial suture 74.3%, Epicardial suture 65%; Left atrial appendage closure (LAAC) ligation 60.9%; Stapler technique with excision of left atrial appendage (LAA) 100%; Stapler without excision 70%. Conclusions: To date, data on surgical left atrial appendage closure are poor and not standardized, even if reported rates are acceptable and comparable to transcatheter procedures. If validated on large-scale non-retrospective and multicentric studies, these promising developments may offer a valuable alternative for patients with atrial fibrillation (AF) and ineligible for oral anticoagulation therapy
Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges
A new traceability chain for the derivation of the farad from dc quantum Hall
effect has been implemented at INRIM. Main components of the chain are two new
coaxial transformer bridges: a resistance ratio bridge, and a quadrature
bridge, both operating at 1541 Hz. The bridges are energized and controlled
with a polyphase direct-digital-synthesizer, which permits to achieve both main
and auxiliary equilibria in an automated way; the bridges and do not include
any variable inductive divider or variable impedance box. The relative
uncertainty in the realization of the farad, at the level of 1000 pF, is
estimated to be 64E-9. A first verification of the realization is given by a
comparison with the maintained national capacitance standard, where an
agreement between measurements within their relative combined uncertainty of
420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table
The metabolic adaptation evoked by arginine enhances the effect of radiation in brain metastases
Selected patients with brain metastases (BM) are candidates for radiotherapy. A lactatogenic metabolism, common in BM, has been associated with radioresistance. We demonstrated that BM express nitric oxide (NO) synthase 2 and that administration of its substrate l-arginine decreases tumor lactate in BM patients. In a placebo-controlled trial, we showed that administration of l-arginine before each fraction enhanced the effect of radiation, improving the control of BM. Studies in preclinical models demonstrated that l-arginine radiosensitization is a NO-mediated mechanism secondary to the metabolic adaptation induced in cancer cells. We showed that the decrease in tumor lactate was a consequence of reduced glycolysis that also impacted ATP and NAD+ levels. These effects were associated with NO-dependent inhibition of GAPDH and hyperactivation of PARP upon nitrosative DNA damage. These metabolic changes ultimately impaired the repair of DNA damage induced by radiation in cancer cells while greatly sparing tumor-infiltrating lymphocytes.Fil: Marullo, Rossella. Cornell University; Estados UnidosFil: Castro, Monica. Universidad de Buenos Aires; ArgentinaFil: Yomtoubian, Shira. Cornell University; Estados UnidosFil: Nieves Calvo Vidal, M.. Cornell University; Estados UnidosFil: Revuelta, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Krumsiek, Jan. Cornell University; Estados UnidosFil: Nicholas, Andrew P.. Cornell University; Estados UnidosFil: Cresta Morgado, Pablo. Universidad de Buenos Aires; ArgentinaFil: Yang, ShaoNing. Cornell University; Estados UnidosFil: Medina, Vanina Araceli. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Roth, Berta María Cristina. Universidad de Buenos Aires; ArgentinaFil: Bonomi, Marcelo. Ohio State University; Estados UnidosFil: Keshari, Kayvan R.. Memorial Sloan Kettering Cancer Center; Estados UnidosFil: Mittal, Vivek. Cornell University; Estados UnidosFil: Navigante, Alfredo Hugo. Universidad de Buenos Aires; ArgentinaFil: Cerchietti, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentin
Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection. A scoping review
The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) global pandemic is a devastating event that is causing thousands of victims every day around the world. One of the main reasons of the great impact of coronavirus disease 2019 (COVID-19) on society is its unexpected spread, which has not allowed an adequate preparation. The scientific community is fighting against time for the production of a vaccine, but it is difficult to place a safe and effective product on the market as fast as the virus is spreading. Similarly, for drugs that can directly interfere with viral pathways, their production times are long, despite the great efforts made. For these reasons, we analyzed the possible role of non-pharmacological substances such as supplements, probiotics, and nutraceuticals in reducing the risk of Sars-CoV-2 infection or mitigating the symptoms of COVID-19. These substances could have numerous advantages in the current circumstances, are generally easily available, and have negligible side effects if administered at the already used and tested dosages. Large scientific evidence supports the benefits that some bacterial and molecular products may exert on the immune response to respiratory viruses. These could also have a regulatory role in systemic inflammation or endothelial damage, which are two crucial aspects of COVID-19. However, there are no specific data available, and rigorous clinical trials should be conducted to confirm the putative benefits of diet supplementation, probiotics, and nutraceuticals in the current pandemic
Recommended from our members
Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios
The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air–sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961–2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001–2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air–sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070–2099 period compared to 1961–1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in General Circulation Models, has the largest impact on the evolution of the Mediterranean water masses, followed by the choice of the socio-economic scenario. The choice of river runoff and atmospheric forcing both have a smaller impact. The state of the MTHC during the historical period is found to have a large influence on the transfer of surface anomalies toward depth. Besides, subsurface currents are substantially modified in the Ionian Sea and the Balearic region. Finally, the response of thermosteric sea level ranges from +34 to +49 cm (2070–2099 vs. 1961–1990), mainly depending on the Atlantic forcing
The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae
[Background]
Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci.[Results]
In order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regions’ adaptive nature.[Conclusions]
The reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.This work has been financially supported from the Spanish Government through MINECO and FEDER funds (AGL2013-47300-C3-3-R and PCIN-2015-143 grants) and from Generalitat Valenciana through PROMETEOII/2014/042 grant, awarded to JMG. This study has been carried out in the context of the European Project ERA-IB “YeastTempTation” EGR thanks the Spanish government for an FPI grant BES-2011-044498 and MM also thanks the Generalitat Valenciana for a VALi+d ACIF/2015/194 grant. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe
- …