97,633 research outputs found

    Air cushion vehicles: A briefing

    Get PDF
    Experience and characteristics; the powering, uses, and implications of large air cushion vehicles (ACV); and the conceptual design and operation of a nuclear powered ACV freighter and supporting facilities are described

    Effective Hamiltonian for fermions in an optical lattice across Feshbach resonance

    Full text link
    We derive the Hamiltonian for cold fermionic atoms in an optical lattice across a broad Feshbach resonance, taking into account of both multiband occupations and neighboring-site collisions. Under typical configurations, the resulting Hamiltonian can be dramatically simplified to an effective single-band model, which describes a new type of resonance between the local dressed molecules and the valence bond states of fermionic atoms at neighboring sites. On different sides of such a resonance, the effective Hamiltonian is reduced to either a t-J model for the fermionic atoms or an XXZ model for the dressed molecules. The parameters in these models are experimentally tunable in the full range, which allows for observation of various phase transitions.Comment: 5 pages, 2 figure

    Continuously observing a dynamically decoupled spin-1 quantum gas

    Get PDF
    We continuously observe dynamical decoupling in a spin-1 quantum gas using a weak optical measurement of spin precession. Continuous dynamical decoupling aims to dramatically modify the character and energy spectrum of spin states to render them insensitive to parasitic fluctuations. Continuous observation measures this new spectrum in a single-preparation of the quantum gas. The measured time-series contains seven tones, which spectrogram analysis parses as splittings, coherences, and coupling strengths between the decoupled states in real-time. With this we locate a regime where a transition between two states is decoupled from magnetic field instabilities up to fourth order, complementary to the parallel work at higher fields by Trypogeorgos et al. (arXiv:1706.07876). The decoupled microscale quantum gas offers magnetic sensitivity in a tunable band, persistent over many milliseconds: the length scales, frequencies, and durations relevant to many applications, including sensing biomagnetic phenomena such as neural spike trains.Comment: 5+ pages, 4 figures, 1 table; revised citation of Trypogeorgos et al. (2017

    Fermiology of Cuprates from First Principles: From Small Pockets to the Luttinger Fermi surface

    Full text link
    Fermiology, the shape and size of the Fermi surface, underpins the low-temperature physical properties of a metal. Recent investigations of the Fermi surface of high-Tc superconductors, however, show a most unusual behavior: upon addition of carriers, ``Fermi'' pockets appear around nodal (hole doping) and antinodal (electron doping) regions of the Brillouin zone in the ``pseudogap'' state. With progressive doping, p, these evolve into well-defined Fermi surfaces around optimal doping (p_opt), with no pseudogap. Correspondingly, various physical responses, including d-wave superconductivity, evolve from highly anomalous, up to p_opt, to more conventional beyond. Describing this evolution holds the key to understanding high-temperature superconductivity. Here, we present ab initio quantum chemical results for cuprates, providing a quantitative description of the evolution of the Fermi surface with doping. Our results constitute an ab initio justification for several, hitherto proposed semiphenomenological theories, offering an unified basis for understanding of various, unusual physical responses of doped cuprates

    A versatile high resolution objective for imaging quantum gases

    Full text link
    We present a high resolution objective lens made entirely from catalog singlets that has a numerical aperture of 0.36. It corrects for aberrations introduced by a glass window and has a long working distance of 35mm, making it suitable for imaging objects within a vacuum system. This offers simple high resolution imaging for many in the quantum gas community. The objective achieves a resolution of 1.3{\mu}m at the design wavelength of 780nm, and a diffraction-limited field of view of 360{\mu}m when imaging through a 5mm window. Images of a resolution target and a pinhole show quantitative agreement with the simulated lens performance. The objective is suitable for diffraction-limited imaging on the D2 line of all the alkalis by changing only the aperture diameter, retaining numerical apertures above 0.32. The design corrects for window thicknesses of up to 15mm if the singlet spacings are modified

    Fractal Cosmology in an Open Universe

    Full text link
    The clustering of galaxies is well characterized by fractal properties, with the presence of an eventual cross-over to homogeneity still a matter of considerable debate. In this letter we discuss the cosmological implications of a fractal distribution of matter, with a possible cross-over to homogeneity at an undetermined scale R_{homo}. Contrary to what is generally assumed, we show that, even when R_{homo} -> \infty, this possibility can be treated consistently within the framework of the expanding universe solutions of Friedmann. The fractal is a perturbation to an open cosmology in which the leading homogeneous component is the cosmic background radiation (CBR). This cosmology, inspired by the observed galaxy distributions, provides a simple explanation for the recent data which indicate the absence of deceleration in the expansion (q_o \approx 0). Correspondingly the `age problem' is also resolved. Further we show that the model can be extended back from the curvature dominated arbitrarily deep into the radiation dominated era, and we discuss qualitatively the modifications to the physics of the anisotropy of the CBR, nucleosynthesis and structure formation.Comment: 7 pages, no figures, to appear in Europhysics Letter

    Competition between Antiferromagnetism and Superconductivity in High TcT_c Cuprates

    Full text link
    Using variational cluster perturbation theory we study the competition between d-wave superconductivity (dSC) and antiferromagnetism (AF) in the the t-t'-t''-U Hubbard model. Large scale computer calculations reproduce the overall ground state phase diagram of the high-temperature superconductors as well as the one-particle excitation spectra for both hole- and electron-doping. We identify clear signatures of the Mott gap as well as of AF and of dSC that should be observable in photoemission experiments.Comment: 4 pages, 4 figure

    Mopra CO Observations of the Bubble HII Region RCW120

    Get PDF
    We use the Mopra radio telescope to test for expansion of the molecular gas associated with the bubble HII region RCW120. A ring, or bubble, morphology is common for Galactic HII regions, but the three-dimensional geometry of such objects is still unclear. Detected near- and far-side expansion of the associated molecular material would be consistent with a three-dimensional spherical object. We map the J=10J = 1\rightarrow 0 transitions of 12^{12}CO, 13^{13}CO, C18^{18}O, and C17^{17}O, and detect emission from all isotopologues. We do not detect the 0011E0_0\rightarrow 1_{-1} E masing lines of CH3_3OH at 108.8939 GHz. The strongest CO emission is from the photodissociation region (PDR), and there is a deficit of emission toward the bubble interior. We find no evidence for expansion of the molecular material associated with RCW120 and therefore can make no claims about its geometry. The lack of detected expansion is roughly in agreement with models for the time-evolution of an HII region like RCW120, and is consistent with an expansion speed of <1.5kms1< 1.5\, {\rm km\, s^{-1}}. Single-position CO spectra show signatures of expansion, which underscores the importance of mapped spectra for such work. Dust temperature enhancements outside the PDR of RCW120 coincide with a deficit of emission in CO, confirming that these temperature enhancements are due to holes in the RCW120 PDR. Hα\alpha emission shows that RCW120 is leaking 5%\sim5\% of the ionizing photons into the interstellar medium (ISM) through PDR holes at the locations of the temperature enhancements. H-alpha emission also shows a diffuse "halo" from leaked photons not associated with discrete holes in the PDR. Overall 25±10%25\pm10\% of all ionizing photons are leaking into the nearby ISM.Comment: 35 pages, 14 figures. Accepted to Ap

    First-principles calculation of the intersublattice exchange interactions and Curie temperatures of full Heusler alloys Ni2MnX (X=Ga, In, Sn, Sb)

    Full text link
    The interatomic exchange interactions and Curie temperatures in Ni-based full Heusler alloys Ni2MnX with X=Ga, In, Sn and Sb are studied within the framework of the density-functional theory. The calculation of the exchange parameters is based on the frozen-magnon approach. Despite closeness of the experimental Curie temperatures for all four systems their magnetism appeared to differ strongly. This difference involves both the Mn-Mn and Mn-Ni exchange interactions. The Curie temperatures, Tc, are calculated within the mean-field approximation by solving a matrix equation for a multi-sublattice system. Good agreement with experiment for all four systems is obtained. The role of different exchange interactions in the formation of Tc of the systems is discussed.Comment: 6 pages, 4 figure

    Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603

    Full text link
    CONTEXT. Stellar populations are the building blocks of galaxies including the Milky Way. The majority, if not all extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, their study is mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. AIMS. This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, i.e. age and metallicity. METHODS. Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, is used to study the properties of the cluster both as a resolved and unresolved stellar population. The unresolved stellar population is analysed using the Hα\alpha equivalent width as an age indicator, and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT, is used to infer these properties from the integrated spectrum. Independently, the resolved stellar population is analysed using the color-magnitude diagram (CMD) for age and metallicity determination. As the SSP model represents the unresolved stellar population, the derived age and metallicity are put to test whether they agree with those derived from resolved stars. RESULTS. The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations.Comment: 9 pages, 5 figures, accepted to A&
    corecore