Fermiology, the shape and size of the Fermi surface, underpins the
low-temperature physical properties of a metal. Recent investigations of the
Fermi surface of high-Tc superconductors, however, show a most unusual
behavior: upon addition of carriers, ``Fermi'' pockets appear around nodal
(hole doping) and antinodal (electron doping) regions of the Brillouin zone in
the ``pseudogap'' state. With progressive doping, p, these evolve into
well-defined Fermi surfaces around optimal doping (p_opt), with no pseudogap.
Correspondingly, various physical responses, including d-wave
superconductivity, evolve from highly anomalous, up to p_opt, to more
conventional beyond. Describing this evolution holds the key to understanding
high-temperature superconductivity. Here, we present ab initio quantum chemical
results for cuprates, providing a quantitative description of the evolution of
the Fermi surface with doping. Our results constitute an ab initio
justification for several, hitherto proposed semiphenomenological theories,
offering an unified basis for understanding of various, unusual physical
responses of doped cuprates