253 research outputs found

    PI3Kγ/δ and NOTCH1 Cross-Regulate Pathways That Define the T-cell Acute Lymphoblastic Leukemia Disease Signature

    Get PDF
    PI3K/AKT and NOTCH1 signaling pathways are frequently dysregulated in T-cell acute lymphoblastic leukemias (T-ALL). Although we have shown that the combined activities of the class I PI3K isoforms p110γ and p110δ play a major role in the development and progression of PTEN-null T-ALL, it has yet to be determined whether their contribution to leukemogenic programing is unique from that associated with NOTCH1 activation. Using an Lmo2-driven mouse model of T-ALL in which both the PI3K/AKT and NOTCH1 pathways are aberrantly upregulated, we now demonstrate that the combined activities of PI3Kγ/δ have both overlapping and distinct roles from NOTCH1 in generating T-ALL disease signature and in promoting tumor cell growth. Treatment of diseased animals with either a dual PI3Kγ/δ or a γ-secretase inhibitor reduced tumor burden, prolonged survival, and induced proapoptotic pathways. Consistent with their similar biological effects, both inhibitors downregulated genes involved in cMYC-dependent metabolism in gene set enrichment analyses. Furthermore, overexpression of cMYC in mice or T-ALL cell lines conferred resistance to both inhibitors, suggesting a point of pathway convergence. Of note, interrogation of transcriptional regulators and analysis of mitochondrial function showed that PI3Kγ/δ activity played a greater role in supporting the disease signature and critical bioenergetic pathways. Results provide insight into the interrelationship between T-ALL oncogenic networks and the therapeutic efficacy of dual PI3Kγ/δ inhibition in the context of NOTCH1 and cMYC signaling

    The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells

    Get PDF
    CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3K\u3b4) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNF\u3b1-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood

    PI3Kδ and PI3Kγ isoforms have distinct functions in regulating pro-tumoural signalling in the multiple myeloma microenvironment

    Get PDF
    Phosphoinositide-3-kinase and protein kinase B (PI3K-AKT) is upregulated in multiple myeloma (MM). Using a combination of short hairpin RNA (shRNA) lentivirus-mediated knockdown and pharmacologic isoform-specific inhibition we investigated the role of the PI3K p110γ (PI3Kγ) subunit in regulating MM proliferation and bone marrow microenvironment-induced MM interactions. We compared this with inhibition of the PI3K p110δ (PI3kδ) subunit and with combined PI3kδ/γ dual inhibition. We found that MM cell adhesion and migration were PI3Kγ-specific functions, with PI3kδ inhibition having no effect in MM adhesion or migration assays. At concentration of the dual PI3Kδ/γ inhibitor duvelisib, which can be achieved in vivo we saw a decrease in AKT phosphorylation at s473 after tumour activation by bone marrow stromal cells (BMSC) and interleukin-6. Moreover, after drug treatment of BMSC/tumour co-culture activation assays only dual PI3kδ/γ inhibition was able to induce MM apoptosis. shRNA lentiviral-mediated targeting of either PI3Kδ or PI3Kγ alone, or both in combination, increased survival of NSG mice xeno-transplanted with MM cells. Moreover, treatment with duvelisib reduced MM tumour burden in vivo. We report that PI3Kδ and PI3Kγ isoforms have distinct functions in MM and that combined PI3kδ/γ isoform inhibition has anti-MM activity. Here we provide a scientific rationale for trials of dual PI3kδ/γ inhibition in patients with MM

    Profiling cytotoxic microRNAs in pediatric and adult glioblastoma cells by high-content screening, identification, and validation of miR-1300

    Get PDF
    MicroRNAs play an important role in the regulation of mRNA translation and have therapeutic potential in cancer and other diseases. To profile the landscape of microRNAs with significant cytotoxicity in the context of glioblastoma (GBM), we performed a high-throughput screen in adult and pediatric GBM cells using a synthetic oligonucleotide library representing all known human microRNAs. Bioinformatics analysis was used to refine this list and the top seven microRNAs were validated in a larger panel of GBM cells using state-of-the-art in vitro assays. The cytotoxic effect of our most relevant candidate was assessed in a preclinical model. Our screen identified ~100 significantly cytotoxic microRNAs with 70% concordance between cell lines. MicroRNA-1300 (miR-1300) was the most potent and robust candidate. We observed a striking binucleated phenotype in miR-1300 transfected cells due to cytokinesis failure followed by apoptosis. This was also observed in two stem-like patient-derived cultures. We identified the physiological role of miR-1300 as a regulator of endomitosis in megakaryocyte differentiation where blockade of cytokinesis is an essential step. In GBM cells, where miR-1300 is normally not expressed, the oncogene Epithelial Cell Transforming 2 (ECT2) was validated as a direct key target. ECT2 siRNA phenocopied the effects of miR-1300, and ECT2 overexpression led to rescue of miR-1300 induced binucleation. We showed that ectopic expression of miR-1300 led to decreased tumor growth in an orthotopic GBM model. Our screen provides a resource for the neuro-oncology community and identified miR-1300 as a novel regulator of endomitosis with translatable potential for therapeutic application

    Role of the Drosophila Non-Visual Ăź-Arrestin Kurtz in Hedgehog Signalling

    Get PDF
    The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms

    The "Persuadable Middle" on Same-Sex Marriage: Formative Research to Build Support among Heterosexual College Students

    Full text link
    Same-sex marriage is a controversial policy issue that affects the welfare of gay and lesbian couples throughout the USA. Considerable research examines opinions about same-sex marriage; however, studies have not investigated the covariates of the “persuadable middle”— those individuals who are neutral or unsure about their views. This group of people is often the target of same-sex marriage campaigns, yet they have received no empirical attention.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89607/1/Woodford et al 2011 Persuadable Middle.pd

    The PI3K p110δ regulates expression of CD38 on regulatory T cells.

    Get PDF
    The PI3K pathway has emerged as a key regulator of regulatory T cell (Treg) development and homeostasis and is required for full Treg-mediated suppression. To identify new genes involved in PI3K-dependent suppression, we compared the transcriptome of WT and p110δ(D910A) Tregs. Among the genes that were differentially expressed was the gene for the transmembrane cyclic ADP ribose hydrolase CD38. Here we show that CD38 is expressed mainly by a subset of Foxp3(+)CD25(+)CD4(+) T cells originating in the thymus and on Tregs in the spleen. CD38(high) WT Tregs showed superior suppressive activity to CD38(low) Tregs, which failed to upregulate CD73, a surface protein which is important for suppression. However, Tregs from heterozygous CD38(+/-) mice were unimpaired despite lower levels of CD38 expression. Therefore, CD38 can be used as a marker for Tregs with high suppressive activity and the impaired Treg function in p110δ(D910A) mice can in part be explained by the failure of CD38(high) cells to develop

    First measurement of the BSB_S meson mass

    Get PDF
    If simplified, every information retrieval problem can be solved when the information need implied by its expression has been identified. We are interested in the criteria used in realising a good information retrieval problem expression. We have listed these criteria through some principles and maxims which first characterized the communication between two persons are applied. We choose to use the gricean maxims because they are the most favoured for this type of situation. Secondly, we have tried to identify some others principles that can be used to realise a good information retrieval problem expression. The principles by Grice can not resolve all forms of error associated with this particular form of communication. In our work, we defined three other principles namely: adhesion principle, reformulation principle, memorization principle. We give some examples of situations where the principles we have formulated are not applicable and the consequences. We present the possible applications of our new model: MIRABEL, which can help in the description of information retrieval problem from. It also compels its user to use essential good expression principle implicitly

    Update of electroweak parameters from Z decays

    Get PDF

    Search for particles with unexpected mass and charge in Z decays

    Get PDF
    • …
    corecore