366 research outputs found

    Exploring the Early Time Behavior of the Excited States of an Archetype Thermally Activated Delayed Fluorescence Molecule

    Get PDF
    Optical pump–probe techniques allow for an in-depth study of dark excited states. Here, we utilize them to map and gain insights into the excited states involved in the thermally activated delayed fluorescence (TADF) mechanism of a benchmark TADF emitter DMAC-TRZ. The results identify different electronic excited states involved in the key TADF transitions and their nature by combining pump–probe and photoluminescence measurements. The photoinduced absorption signals are highly dependent on polarity, affecting the transition oscillator strength but not their relative energy positions. In methylcyclohexane, a strong and vibronically structured local triplet excited state absorption (3LE → 3LE n ) is observed, which is quenched in higher polarity solvents as 3CT becomes the lowest triplet state. Furthermore, ultrafast transient absorption (fsTA) confirms the presence of two stable conformers of DMAC-TRZ: (1) quasi-axial (QA) interconverting within 20 ps into (2) quasi-equatorial (QE) in the excited state. Moreover, fsTA highlights how sensitive excited state couplings are to the environment and the molecular conformation

    Intramolecular locking and coumarin insertion: a stepwise approach for TADF design

    Get PDF
    Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied Qx-Ph-DMAC fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point of view, demonstrating the cumulative effects of multiple small modifications that combine to afford significantly improved TADF performance. First, an extra phenyl ring is added to the acceptor part of Qx-Ph-DMAC to increase the conjugation length, resulting in BQx-Ph-DMAC, which acts as an intermediate molecular structure. Next, an electron-deficient coumarin unit is incorporated to fortify the electron accepting ability, affording ChromPy-Ph-DMAC with red-shifted emission. Finally, the conjugated system is further enlarged by ‘locking’ the molecular structure, generating DBChromQx-DMAC with further red-shifted emission. The addition of the coumarin unit significantly impacts the charge-transfer excited state energy levels with little effect on the locally excited states, resulting in a decrease of the singlet–triplet energy gap. As a result, the two coumarin-based emitters show considerably improved TADF performance in 1 w/w% zeonex films when compared to the initial Qx-Ph-DMAC structure. ‘Locking’ the molecular structure further lowers the singlet–triplet energy gap, resulting in more efficient reverse intersystem crossing and increasing the contribution of TADF to the total emission

    Resonance Raman studies of Rieske-type proteins

    Full text link
    Resonance Raman (RR) spectra are reported for the [2Fe-2S] Rieske protein from Thermus thermophilus (TRP) and phthalate dioxygenase from Pseudomonas cepacia (PDO) as a function of pH and excitation wavelength. Depolarization ratio measurements are presented for the RR spectra of spinach ferredoxin (SFD), TRP, and PDO at 74 K. By comparison with previously published RR spectra of SFD, we suggest reasonable assignments for the spectra of TRP and PDO. The spectra of PDO exhibit virtually no pH dependence, while significant changes are observed in TRP spectra upon raising the pH from 7.3 to 10.1. One band near 270 cm-1, which consists of components at 266 cm-1 and 274 cm-1, is attributed to Fe(III)-N(His) stretching motions. We suggest that these two components arise from conformers having a protonated-hydrogen-bonded imidazole (266 cm-1) and deprotonated-hydrogen-bonded imidazolate (274 cm-1) coordinated to the Fe/S cluster and that the relative populations of the two species are pH-dependent; a simple structural model is proposed to account for this behavior in the respiratory-type Rieske proteins. In addition, we have identified RR peaks associated with the bridging and terminal sulfur atoms of the Fe-S-N cluster. The RR excitation profiles of peaks associated with these atoms are indistinguishable from each other in TRP (pH 7.3) and PDO and differ greatly from those of [2Fe-2S] ferredoxins. The profiles are bimodal with maxima near 490 nm and > approx. 550 nm. By contrast, bands associated with the Fe-N stretch show a somewhat different enhancement profile. Upon reduction, RR peaks assigned to Fe-N vibrations are no longer observed, with the resulting spectrum being remarkably similar to that reported for reduced adrenodoxin. This indicates that only modes associated with Fe-S bonds are observed and supports the idea that the reducing electron resides on the iron atom coordinated to the two histidine residues. Taken as a whole, the data are consistent with an St2FeSb2Fe[N(His)]t2 structure for the Rieske-type cluster.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29687/1/0000014.pd

    New Results on the SymSum Distinguisher on Round-Reduced SHA3

    Get PDF
    In ToSC 2017 Saha et al. demonstrated an interesting property of SHA3 based on higher-order vectorial derivatives which led to self-symmetry based distinguishers referred to as SymSum and bettered the complexity w.r.t the well-studied ZeroSum distinguisher by a factor of 4. This work attempts to take a fresh look at this distinguisher in the light of the linearization technique developed by Guo et al. in Asiacrypt 2016. It is observed that the efficiency of SymSum against ZeroSum drops from 4 to 2 for any number of rounds linearized. This is supported by theoretical proofs. SymSum augmented with linearization can penetrate up to two more rounds as against the classical version. In addition to that, one more round is extended by inversion technique on the final hash values. The combined approach leads to distinguishers up to 9 rounds of SHA3 variants with a complexity of only 264 which is better than the equivalent ZeroSum distinguisher by the factor of 2. To the best of our knowledge this is the best distinguisher available on this many rounds of SHA3

    Field-effect transistors made of graphene grown on recycled copper foils

    Get PDF
    In this paper, recycled low purity copper foils (98%) are tested after a multiple-use process for obtaining singlelayer graphene (SLG). The graphene transfer technique based on water electrolysis (bubbling) is used for the preservation of the Cu foils in multiple graphene deposition cycles. Preliminary cleaning by O2 plasma remove carbon residues from the copper surface. The Cu foils are then cleaned with hydrochloric (HCl) or acetic acid (CH3COOH) solutions, used as chemical baths, and the results compared. Atomic force microscopy used to check the Cu foil roughness, a critical parameter for the growth of SLG, shows root-mean-square roughness of 4.61, 28.00, 3.50 nm, for new Cu foil, after acetic acid, and after hydrochloric acid treatments, respectively. Full coverage of SLG was obtained only during the third usage of Cu foils, i.e., after two recycling cycles. Carrier mobility measured on graphene field-effect transistors fabricated after each recycling cycle, show values of 814 (1728) and 1847 cm2/V (1147 cm2/V), for electrons (holes) after one and two recycling cycles, respectively, thus demonstrating the improvement of the quality of the graphene with the number of Cu recycling cycles. Devices fabricated with graphene grown on the initial, low-purity, Cu foil did not show transistor behavior.FCT in the framework of the Strategic Funding UIDB/04650/2020, POCI-01-0145-FEDER-028114 (GRAPHSENS). NPq – Brazil. Work supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020 and by the project POCI-01-0145-FEDER-028114 (GRAPHSENS

    Engineering the Redox Potential over a Wide Range within a New Class of FeS Proteins

    Get PDF
    Abstract: MitoNEET is a newly discovered mitochondrial protein and a target of the TZD class of antidiabetes drugs. MitoNEET is homodimeric with each protomer binding a [2Fe-2S] center through a rare 3-Cys and 1-His coordination geometry. Both the fold and the coordination of the [2Fe-2S] centers suggest that it could have novel properties compared to other known [2Fe-2S] proteins. We tested the robustness of mitoNEET to mutation and the range over which the redox potential (EM) could be tuned. We found that the protein could tolerate an array of mutations that modified the EM of the [2Fe-2S] center over a range of ∼700 mV, which is the largest EM range engineered in an FeS protein and, importantly, spans the cellular redox range (+200 to-300 mV). These properties make mitoNEET potentially useful for both physiological studies and industrial applications as a stable, water-soluble, redox agent

    Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    Get PDF
    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies
    corecore