
New Results on the SymSum Distinguisher on
Round-Reduced SHA3

Sahiba Suryawanshi, Dhiman Saha, Satyam Sachan

de.ci.phe.red Lab
Department of Electical Engineering and Computer Science

Indian Institute of Technology Bhilai, India
(sahibas,dhiman,satyams)@iitbhilai.ac.in

Abstract. In ToSC 2017 Saha et al. demonstrated an interesting prop-
erty of SHA3 based on higher-order vectorial derivatives which led to
self-symmetry based distinguishers referred to as SymSum and bettered
the complexity w.r.t the well-studied ZeroSum distinguisher by a factor
of 4. This work attempts to take a fresh look at this distinguisher in the
light of the linearization technique developed by Guo et al. in Asiacrypt
2016. It is observed that the efficiency of SymSum against ZeroSum drops
from 4 to 2 for any number of rounds linearized. This is supported by the-
oretical proofs. SymSum augmented with linearization can penetrate up to
two more rounds as against the classical version. In addition to that, one
more round is extended by inversion technique on the final hash values.
The combined approach leads to distinguishers up to 9 rounds of SHA3

variants with a complexity of only 264 which is better than the equivalent
ZeroSum distinguisher by the factor of 2. To the best of our knowledge
this is the best distinguisher available on this many rounds of SHA3.

Keywords: SHA3· Keccak·Distinguisher · SymSum· ZeroSum·Higher-order
Derivatives

1 Introduction

The hash function Keccak [3] which went on to be adopted as the SHA3 [18]
standard is one of the most extensively studied hash algorithms. While find-
ing pre-images and collisions constitute the primary analysis strategies of a
hash function, the paradigm of devising distinguishers give insight into the non-
randomness of the construction. Further, it has been evidenced by numerous
results in contemporary literature where distinguishers have been exploited to
mount collision and pre-image attacks thereby amplifying their scope and im-
pact. In case of SHA3, one of most investigated distinguisher is the ZeroSum dis-
tinguisher which is based on the fundamental result of higher-order derivatives
that the (d+1)th derivative of a d−degree function leads to a zero function. This
translates to obtaining a zero XOR-Sum for 2d+1 computations of a vectorial func-
tion. The main research is in the direction of tight-bounding the value of d which
automatically leads to reduction in complexity of computing the ZeroSum. Most

of the results have been reported on the internal permutation Keccak-f and/or
Keccak-p. In 2009, Aumasson and Meier [1] introduced ZeroSum distinguisher
on Keccak-f which penetrated up to 16 rounds by leveraging on the inside-
out strategy. In 2011, Plasencia et al. [15] introduce 4 round distinguisher for
Hash function rather than internal permutation function, and also give a 2 round
pre-image attack and 3 round near-collision attack on SHA3-224 and SHA3-256

variants. The same year, Boura et al. [4] improvise ZeroSum distinguisher. They
present ZeroSum distinguisher and high order differential derivative for the full
Keccak-p permutation. In 2012, Duan et al. [6] state an advanced ZeroSum dis-
tinguisher full round Keccak-f with 21579 complexity. The same year, Duc et
al. [7] present the Unaligned Rebound Attack for 8 round distinguisher with
lesser complexity. In 2013, Morawiecki et al. [14] present rotational cryptanal-
ysis. It allows a preimage attack on 4-round Keccak with complexity 2506. It
also states distinguisher on 5 rounds Keccak-f [1600] permutation with 215 com-
plexity. In 2014 Das et al. analyze differential propagation properties of Keccak

furthermore uses for 6 round Distinguisher with 252 complexity. In 2015, Jean
et al. [10] produce internal differential boomerang distinguisher. They gener-
ate boomerang pairs and analyze the differential property. Their distinguisher
depends on round constant. So, according to where permutation starts, their
query complexity varies. For Keccak-f permutation, when it starts at 0 round,
with complexity 25, they distinguish up to 6 rounds, and with 213 complexity to
7 rounds. Similarly, when permutation begins with 3rd round with complexity
210.3, they distinguish up to 7 rounds, and with 218.3 complexity to 8 rounds.
Same year, Dinur et al.[5] proposed a Cube attack like a cryptanalysis technique
that includes algebraic and structural analysis, which contains key recovery and
MAC forgery, practical up to 6 rounds and theoretical to 9 rounds of Keccak.
In 2016, Guo et al. [8] introduce the linearization technique called Linear Struc-
ture. It permits linearization up to 3 rounds of Keccak. It extends the ZeroSum

distinguisher of Keccak-p permutation up to 15 rounds and pre-image attack up
to 4 rounds.

It is evidenced from the above discussion that most of the results have been
reported on Keccak-p that few on the hash function SHA3. Moreover, only a few
of the distinguishers on Keccak-p can be extended on to any SHA3 variant itself.
However, in 2017, Saha et al. [17] introduced a new distinguisher called SymSum

which examines a symmetric property of the output-sum of SHA3 when evalu-
ated on symmetric inputs. These distinguishers penetrate up to 9 rounds and
theoretically achieve a 4-fold improvement over ZeroSum in terms of complexity.
The prime observation was the position of the nonlinear operation χ in the se-
quence of sub-operations in the Keccak-p round function. Same year, Huang et
al. [9] improvise a Cube attack named Conditional Cube attack, impose some
conditions on specific bits and use Mixed Integer Linear Programming (MILP)
to construct conditional cubes with complexity 233, 7 round cube distinguisher
builds on SHA3-224. The same year, Qiao et al. [16] introduce a pre-image attack
up to 5 rounds, by linearize all S-box at first round and form a 3 round differ-
ential trail for SHAKE128 and SHA3-224. They put some conditions so that it

satisfies for linearization and differential trail. Same year, Li et al. [12] proposed
a cross-linear structure for a pre-image attack. They constructed a cross-linear
structure for Keccak [400] and found a pre-image. The complexity of their attack
is 2150 for 3 round SHA3-256. In 2019, Li et al. [13] proposed a pre-image attack
referred to as the Allocating Approach on 4 round SHA3-256.

In this work, we investigate the SymSum property introduced by Saha et al.
further and try to augment with observations by Guo et al. in their work on linear
structures. In particular, we achieve a one/two-round advantage by combining
SymSum with linear structures. However, the structures we use slightly differ from
the ones reported in [8] since we do not have any requirement of keeping χ−1 to
be linear. This is attributed to the fact that we are mounting the attack on the
hash-function and hence cannot leverage the inside-out technique. Consequently,
we can relax the constraints that were imposed for the same. Further, we show
a simple trick to gain one more round by just inverting1 the last round χ before
computing the output-sum. Using all these techniques, we are able to mount
SymSum distinguishers on up to 9-rounds of SHA3 variants with a complexity of
only 264. We show that SymSum loses its 4-fold advantage over ZeroSum when
augmented with linear structures and also furnish a proof for the same. The
present SymSum distinguishers still have a 2-fold advantage making them the best
available distinguishers on SHA3 which are independent of the number (≥ 1) of
rounds linearized. We validate most of claims by providing experimental evidence
for some of the practically verifiable distinguishers. Our results are summarized
in Table 1.

Table 1: Summary of the results reported

SHA3-variant #Rounds ZeroSum SymSum Remarks

SHA3-224 8 265 264 2R Linear

SHA3-256 7 233 232 2R Linear

SHA3-384 8 233 232 2R Linear + χ−1

SHA3-512 8 265 264 1R Linear + χ−1

SHAKE128
9 265 264 2R Linear + χ−1

10 2513 2511 χ−1

SHAKE256

8 233 232 2R Linear + χ−1

9 2257 2255 χ−1

10 2513 2511 χ−1

Organization Rest of the paper is organized as follows. Section 2 gives
a brief description of the SHA3 and SymSum distinguisher and linear structures
of Keccak-p. Section 3 provides proof of how the efficiency of SymSum reduces
when we apply linearization. The new distinguishers introduced in this work are
illustrated in Section 4. The experiments on round-reduced SHA3 to validate the

1 This applies to SHA3 variants where at least one entire plane is available from the
hash value

claims are reported in Section 5. A discussion on all the devised distinguishers
is furnished in Section 5. Finally, concluding remarks are given in Section 6.

2 Preliminaries

In this section, we give a brief description of the SymSum distinguisher and the
idea of linear structure in Keccak-p.

2.1 The Keccak Hash Function

The Keccak structure follows Sponge [2] construction that applies fixed-length
permutation on variable-length input and maps to variable-length output. It
gives Fn2 length element output from Fm2 length input element where n and m
are of any length. The permutation applied on finite-state b = r + c bits, where
r is rate and c is capacity. Here the finite state b of Sponge construction is
the width of Keccak-f permutation. The Sponge construction has 2 phases: the
absorption and squeezing phases. Firstly the input message M padded according
to the padding rule that makes input message after padding M

′
multiple of r

and breaks M
′

into m1,m2, . . .mk each of size r. Initially, state b set to all 0′s
which is initialization vector (IV) and input of f is the XORed value of the first
input message block m1 of size r and r bits of IV then the output of f is XORed
with next input message m2 and input to f this will happen until all the message
blocks get processed this is absorption phase. The required output digest collects
on the squeezing phase. Suppose Z is the required digest. If Z < r then, it takes
first Z bits of the output of absorbing phase, otherwise, if Z > r then, it needs
to input to f and get more bits repeatedly until it gets Z bits output digest.
Finally, the output digest Z is the output of the Sponge function.

Keccak-p Permutation: There are 7 Keccak-f permutations which are
denoted by Keccak-f [b, nr], here nr is the number of rounds and b is the width
of Keccak-f permutation. nr depends on b and calculated as nr = 12 + 2l , here
l = log2(b

25) where b ∈ {25, 50, 100, 200, 400, 800, 1600}. Keccak-f permutations

states can denote as 5× 5×w where w = b
25 such that w ∈ {1, 2, 4, 8, 16, 32, 64}.

Here we use Keccak-f [1600] that require 24 rounds. Each round has 5 mapping
R = ι ◦ χ ◦ π ◦ ρ ◦ θ

θ : θ mapping is a linear operation that provides diffusion. In the θ map-
ping A[x, y, z] XORed with parities of neighbouring 2 columns in the following
manner:

A[x, y, z] = A[x, y, z]⊕ P [(x− 1) mod 5, ∗, z]⊕ P [(x+ 1) mod 5, ∗, (mod64)]

Here P [x, ∗, z] is parity of a column that can be calculated as :

P [x, ∗, z] =⊕4
j=0 A[x, j, z]

ρ : ρ mapping is another linear operation that rotates each lane by some
predefined values. Here first column and last row represent y axis and x axis
values respectively.

A[x, y, z] = A[x, y, z≪t] for x, y = 0, ...4

Here ≪ is a bitwise rotation
π: π mapping is another Linear operation which permutes on slices by inter-

changing lanes as:
A[y, (2x+ 3y) mod 5, z] = A[x, y, z] for x, y = 0, ...4, z = 0, ...63

χ: χ is the only Non-linear operation that operates on rows independently
as:

A[x, y, z] = A[x, y, z]⊕ (∼ A[x+ 1, y, z]) ∧A[x+ 2, y, z]
ι: A unique RC add to lane A[0, 0] depend on round number.

A[0, 0, ∗] = A[0, 0, ∗]⊕RC

2.2 SymSum Distinguishers on SHA3

In 2017, Saha et al. introduced an interesting algebraic property related to
SPN round functions where the non-linear transformation preceded the round-
constant addition. This was used to devise a new class of distinguishers referred
to as SymSum. The basic result was that the round-constants could not influence
the highest degree monomials which determined the upper-bound on the degree
of a vectorial function. This helped them devise a round-constant independent
function by computing a special type of derivative called the m−fold vectorial
derivative. They further showed that the order of this derivative can be a factor
of 4 less than the ZeroSum distinguisher which actually computes the m−fold
simple derivatives. To verify this property, they used self-symmetric input states
as inputs and the hypothesis was that the output sum across all hash values
would also preserve the self-symmetry. Self-symmetry of Keccak can be defined
as the first 32 slices are identical to the last 32 slices of the Keccak state as
shown in

Fig. 1. Here σ1 and σ2 are identical.

Fig. 1: Self-Symmetric State of Keccak [11]

For brevity, the main results are mentioned below, where TYPE-II as defined
in [17] are monomials that are dependent on round-constants:

Lemma 1 [17] For SPN round function G, if the ordering of components is in
such a way that the non-linear function precedes from round constant addition

then G can express as: G = F + C × H where d◦G = d◦F and d◦G > d◦H where
G,F ,H : Fn2 → Fn2 and C is a constant

Theorem 1. [17] The upper-bound on the degree of TYPE-II monomials is given
by the following expression: d◦Fq

s′
≤ d◦Fq − d◦N

Lemma 2 [17] The (d◦F −d◦N + 1)−fold vectorial derivative of Fq, is a func-
tion that is independent of round constant

Here d◦F , d◦N are the upper bounds on the degrees of function G and
non-linear function N respectively and Fq is function after q rounds. Using the
above mentioned lemmas the authors furnished a proof that SymSum distinguisher
is better than ZeroSum distinguisher for SHA3 by a factor of 4.

2.3 Linear Structures

The idea of linearization as introduced by Guo et al. is basically a lane-wise
restriction on the input space so as to handle the linear θ and non-linear χ op-
erations of the Keccak-p round function. The authors demonstrate linearization
of the Keccak-p permutation up to 3 rounds: 1 round backward and 2 rounds
forward. It extends the ZeroSum distinguisher and also leads to new pre-image
attacks. To understand the technique, one needs to look at the Boolean ex-
pression of the χ function. The primary observation is that if two consecutive
variables never come together in a row then, then all output co-ordinate func-
tions of χ become linear. The operation θ which relies on the column parity of
spatially adjacent columns can be handled so that it does does not diffuse the
state by keeping the column parity constants across calls to Keccak-p. The idea
is captured in Fig. 2. As evident from the figure, to handle the effect of θ on the
variables, the following condition is imposed where α is any constant:

A[1, 0]⊕A[1, 1]⊕A[1, 2]⊕A[1, 3]⊕A[1, 4] = α

This can be equivalently written as A[1, 4] =
⊕3

j=0 A[1, j] ⊕ α. This results, in
1 round linearization of Keccak with degree of input up to 256.

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 3,4 4,4

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 4,2 3,4 4,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

θ π .ρ χ .ι

2,4

Fig. 2: Keccak state configuration for 1-round linearization with degrees of free-
dom 256 [8]. Here white cells are constants, orange cells are variable with degree
1, and green cells have degree at most 1.

To increase the degree of freedom, it is possible to take variables at different
columns as shown in Fig. 3 as A[i, 4] =

⊕3
j=0A[i, j]⊕ αi where i = 0, 2 , j =

0, 1, 2, 3.

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 4,2 0,3 1,4

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

θ π .ρ χ .ι

3,1

Fig. 3: Keccak state configuration for linearization with degree of freedom 512
[8]

For 2-round linearization, the input state should be taken as shown in the
Fig.4, here light gray cells and dark grey has value 0 and 1 respectively. To
handle θ at 1 round variables need to satisfy the following condition.

A[1, 0]⊕A[1, 1]⊕A[1, 2]⊕A[1, 3] = A[1, 4]⊕ 0xf...f

A[2, 0]⊕A[2, 1]⊕A[2, 2]⊕A[2, 3] = 0xf...f

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

0,0 2,0 3,0 4,0

0,1 2,1 3,1 4,1

0,2 2,2 3,2 4,2

0,3 2,3 3,3 4,3

0,4 3,4 4,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

1,0

1,1

1,2

1,3

1,4

0,0 1,1 2,2 3,3 4,4

3,0 4,1 0,2 1,3 2,4

1,0 2,1 3,2 4,3 0,4

4,0 0,1 1,2 2,3 3,4

2,0 3,1 4,2 0,3 1,4

π .ρ

π .ρ

χ .ιθ

χ .ι

0,0 4,1 3,2 2,3 1,4

3,3 2,4 1,0 0,1 4,2

1,1 0,2 4,3 3,4 2,0

4,4 3,0 2,1 1,2 0,3

2,2 1,3 0,4 4,0 3,1

θ

2,4

Fig. 4: State configuration to handle χ at 2nd round [8]
At second-round θ, ρ, π permute variables, so to handle 2 round θ variables

have to satisfy the following conditions.

A[2, 0]≪62 = A[0, 0]⊕A[2, 2]≪43

A[2, 1]≪6 = S[0, 1]≪36 ⊕A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪41 ⊕A[2, 0]≪62

3 Investigating Effect of Linear Structures on SymSum

Our first study constitutes analyzing the effect of using linear structures in con-
junction with the SymSum property. We extend the ZeroSum distinguisher and
SymSum distinguisher by applying linearization technique up to 2 rounds. How-
ever, we argue that because of linearization, the difference in complexities for
obtaining SymSum and ZeroSum decreases from the factor of 4 to 2. We next try to
furnish theoretical arguments to support this claim. Thus, we first need to look
at a more general result that compares the behaviour of a SPN round function
(as observed in [17]) with and without linearization. For the SPN round function
without applying linear structures, the behaviour is described by lemma 1. The
following lemma captures the same while incorporating the effect of linearization.

Lemma 3 For any SPN round function G iterated for nr rounds, if lr(≤ nr)
rounds are linearized, the degrees of the linearized version (G) and unlinearized
versions (G′) are related by the degree (λ) of the non-linear component function
by the following relation:

d◦G ≤ λlr × d◦G′ where

G = Gnr

G′ = Gnr−lr ◦ G′lr

G′ ← Linearized version of G

Here d◦G, d◦G′ are the upper bounds on the degrees of G,G′ respectively.

Proof. Let us write down the degree of the unlinearized version G. Since the
degree grows exponentially (before asymptotically converging on the highest
possible degree which is determined by the number of independent input vari-
ables) in the degree of the non-linear component, we can write the following
expression:

G = G ◦ G ◦ G ◦ · · ·nr times

=⇒ d◦G ≤ (d◦G)nr

= λnr (1)

Now let us write the expression for the linearized version:

G′ = {G ◦ G ◦ G ◦ · · · (nr − lr) times} ◦ {G′ ◦ G′ ◦ G′ ◦ · · · lr times}
=⇒ d◦G′ ≤ (d◦G)nr−lr × (d◦G′)lr

= λnr−lr [∵ d◦G′lr = 1] (2)

From Equation 1 and Equation 2 it follows that: d◦G ≤ λlr × d◦G′ ut

With the above proof in place, we revisit lemma 1 in the light of lineariza-
tion. We argue that lemma 1 still holds for the linearized version G′ of G. This
implies that the degree of G′ will be determined by monomials which are indepen-
dent of round constants (TYPE-I) from monomials that involve round constants
(TYPE-II). We use the same terminology as stated in [17] and redo the proof of
lemma 1.

Lemma 4 Lemma 1 holds under linearization.

Proof. Let us consider the SPN round function (G) as stated above with the
restriction that the non-linear operation precedes the round-constant addition
(as required by lemma 1). So, let G = C ◦ N ◦ L where C represents the round
constant addition, N is non-linear component, and L is the linear component.
So for nr rounds, G can be written as:

G = (Cnr
◦ N ◦ L) ◦ (Cnr−1 ◦ N ◦ L) ◦ · · · ◦ (C1 ◦ N ◦ L)

=
[
(Cnr

◦ N ◦ L) ◦ · · · ◦ (C2 ◦ N ◦ L) ◦ C1
]
◦ (N ◦ L) (3)

However, if linear structures are applied for lr rounds then G′ can be ex-
pressed as:

G′ = (Cnr
◦ N ◦ L) ◦ (Cnr−1 ◦ N ◦ L) ◦ · · · ◦ (Cnr−lr ◦ Nnr−lr ◦ Lnr−lr)

◦(Clr ◦ L
′
◦ L) ◦ · · · ◦ (C1 ◦ L

′
◦ L)

=
[
(Cnr

◦ N ◦ Lq) ◦ · · · ◦ (Cnr−lr ◦ N ◦ L) ◦ (Clr ◦ L
′
◦ L) ◦ · · · ◦ C1

]
◦ (L

′
◦ L)(4)

Here L′ is a linearized version of N thus d◦L′ will be reduced by (λ − 1).
Due to Equation (3) and (4), it can be observed that after 1 round, the round
constant C1 has no effect of N (or L′ in case of linearization). Now, using the
strategy described in [17] to segregate monomials which are independent of round
constants (TYPE-I) from monomials that involve round constants (TYPE-II) we
can visualize any co-ordinate function of G′ as Fnr :

Fnr = Fnr

c′
⊕Fnr

c where

{
TYPE-I ∈ Fnr

c′

TYPE-II ∈ Fnr
c

(a) To Prove: d◦Fm
c′
> d◦Fmc (Proof by induction)

Base case: Let nr = 1 which implies G = G1 = C1 ◦ N ◦ L,
However, we have to take into account the linearization. So let lr = 1.
Therefore G′ = G′1 = C1 ◦ L

′ ◦ L. Hence the degree of TYPE-I and TYPE-II

monomials are:

d◦Fc′ = d◦(L
′
◦ L) = λ− (λ− 1) = 1

d◦Fc = 0
[
∵ C1is independent of L

′]
Thus d◦Fc′ > d◦Fc Hence lemma hold for base condition i.e., at nr = 1

Inductive hypothesis: Let us assume the lemma hold for nr = m i.e., d◦Fm
c′
>

d◦Fmc

Inductive step: Let nr = m+ 1. Fm+1 = Cm+1 ◦ N ◦ L ◦ Fm

d◦Fm+1
c ≤ d◦(N ◦ L)× d◦Fmc

< d◦(N ◦ L)× d◦Fm
c′
[
∵ d◦Fm

c′
> d◦Fmc

]
≤ d◦Fm+1

c′

Hence, by induction, the lemma holds ∀nr ∈ N. ut

Our next claim is that the difference in the degrees of TYPE-I and TYPE-II

monomials as stated by Saha et al. in [17] no longer holds as we linearize the
SPN. For any value of lr ≥ 1, the following theorem holds instead. One can
note that unlike [17], the following result is independent of the degree of the
non-linear component.

Theorem 2. With at least one round linearized, the upper-bound on the degree
of TYPE-II monomials in terms of TYPE-I monomials is given by:

d◦Fnr
c ≤ d◦F

nr

c′
− 1

Proof. We start by segregating the TYPE-II monomials further. The new sub-
type is referred to as TYPE-III and represents a TYPE-II monomial which is
independent of any variables and constitutes only constants terms as stated
below: ∏

Ci where Ci is any constant term

Suppose our function is in the linear form up to lr rounds (lr ≥ 1) then using
notations used above:

G′lr = (Clr ◦ L
′
◦ L) ◦ (Clr−1 ◦ L

′
◦ L) ◦ · · · ◦ (C2 ◦ L

′
◦ L) ◦ (C1 ◦ L

′
◦ L)

Since there is no non-linear function, the degree of TYPE-I and TYPE-II

monomials never change. Also for TYPE-II monomials, only TYPE-III monomi-
als occur. Thus the degree of TYPE-I monomials and TYPE-II monomials should
1 and 0 (because of TYPE-III), respectively i.e., d◦F lrc = 0 and d◦F lr

c′
= 1. Now,

we prove by induction.

Base case: Let nr = lr+1, i.e. G′ = G◦G′lr implying a single non-linear function
and d◦N = λ,.

Now, TYPE-I monomials will reach the highest degree after the current round
when λ TYPE-I monomials mix together under N in the current round. This final
degree of TYPE-I is expressed as:

d◦F lr+1

c′
=

λ∑
i=1

[
d◦F lr

c′

]
i

= 1 + 1 · · ·λ times [∵ d◦F lr
c′

= 1]

= λ (5)

Next, TYPE-II monomials reach the highest degree when (λ − 1) TYPE-I

monomials from (λ− 1) co-ordinate functions mix with one TYPE-II monomial.
Thus for TYPE-II monomials we have

d◦F lr+1
c =

λ−1∑
i=1

[
d◦F lr

c′

]
i
+ d◦F lrc

=

λ−1∑
i=1

1 + 0 [∵ d◦F lrc = 0 (TYPE-III) d◦F lr
c′

= 1]

= λ− 1 (6)

Hence, by Equation (5) and (6) theorem holds for base case.

Inductive hypothesis : Let us assume the theorem holds for nr = m rounds i.e.,

d◦Fmc ≤ d◦Fmc′ − 1

Inductive step: Let nr = m + 1 then by lemma 3 we have d◦Fm
c′
≤ λm−lr and

d◦Fmc ≤ λm−lr − 1. Then by arguments similar to the base-case, we have degree
of TYPE-I monomials as:

d◦Fm+1
c′

=

λ∑
i=1

[
d◦Fm

c′
]
i

≤
λ∑
i=1

λm−lr = λm−lr+1 (7)

Similarly for TYPE-II monomials

d◦Fm+1
c =

λ−1∑
i=1

[
d◦Fm

c′
]
i
+ d◦Fmc

≤
λ−1∑
i=1

λm−lr + λm−lr − 1

= (λ− 1)λm−lr + λm−lr − 1 = λm−lr+1 − 1

≤ d◦Fm+1
c′

− 1 [By Equation (7)] (8)

Thus by principle of induction Theorem 2 holds ∀nr ∈ N. ut

We now have the following corollary which forms the base of all distinguishers
reported in this work. As one might realize this constitutes a deviation from the
result reported in [17] as stated in lemma 2.

Corollary 1. With lr linearized rounds
(
d◦G
λlr

)
−fold vectorial derivative of G is

a function which is independent of round constants.

The corollary easily follows from lemma 3 and Theorem 2. Since linearized

version G′ of G has degree
(
d◦G
λlr

)
and the maximum degree of TYPE-II mono-

mials in G′ is
(
d◦G
λlr
− 1
)

, so the
(
d◦G
λlr

)
−fold vectorial derivative of G will result

in a round-constant independent function. Consequently, such a function would
preserve the SymSum property as introduced in [17]. In the next section, we show
how the above results are used to mount highly efficient and practical SymSum
distinguishers on SHA3 variants.

4 Augmenting the SymSum Distinguisher

The SymSum property can be extended at varied number of rounds based on
the augmentation strategies like prepending linear structures and appending
the hash-inversion trick wherever applicable. This is captured by Fig. 5. In the
subsequent sub-sections we explore these strategies that help us to reach highest
number of rounds for some SHA3 variants.

Fig. 5: Various extension strategies to verify the SymSum property by augmenting
1-round, 2-round linear structures and the hash-inversion trick

4.1 Extending SymSum using 1-round Linearization and χ−1 trick

To gain an advantage of 2 rounds for the SymSum distinguisher, we linearize the
first round and perform χ−1 ◦ ι−1 on the output digest when applicable. The
input set should satisfy the following conditions so that it linearizes 1 round
and also satisfies the condition for SymSum distinguisher which constitutes giving
self-symmetric inputs:

1. The input set is a set of inputs such that the first 32 slices of the state are
the same as the last 32 slices

2. For linearization, input state has the restriction that ∀A[i, j] where i =
0, 2, j = 0, 1, 2, 3,

A[i, 3] =

2⊕
j=0

A[i, j]⊕ αi for any constant α

(a) Keccak state for 1-round linearization
of SHAKE128 and SHA3-224

(b) Input state for 1-round lineariza-
tion of SHAKE128

Fig. 6: Different slice configurations for SHA3

The χ−1 trick applies only to those variants of SHA3 which give at least one
plane ofKeccak state in the output hash value. Therefore, it is not applicable
to SHA3-224 and SHA3-256 because they give 224 and 256 bits of hash value
respectively which is less that 320 bits required for a full plane. The degree of

freedom of this state will be 192 if we take the input state equivalent to the
state shown in Fig. 6a. Therefore, after 1-round linearization and applying χ−1

strategy, SymSum on SHAKE128 can distinguish up to 9 rounds. For the other
variants of SHA3, the input state is different because of the difference in size of
capacity part. For instance, after computing the output sum for 4 rounds on
SHA3, we get SymSum for 24 invocations. For the classical SymSum distinguisher,
it is obtained at 215 and 214. Therefore, the extended SymSum distinguisher has
an advantage of 2 rounds, although the effectiveness reduces by the factor of 2.

4.2 Extension of SymSum distinguisher up to 3 rounds:

We now show the use of 2-round linear structures in conjunction with inverting
the hash for the last round. For 2 round linearization we use the linear structure,
for which we need to handle the θ, ρ, π, χ mappings of Keccak. To handle the first
round χ we take variables in 2 alternative columns so that no two variables come
adjacent in χ operation, thus maintaining the linearity after the first round. We
restrict other columns to 0 and/or 1, as shown in the Fig. 7 so that before χ in
the second round no two adjacent lanes become variable. Additionally, because
of the columns that have variables, constant values may change because of θ. To
handle θ the following conditions need to be imposed:

A[0, 0]⊕A[0, 1]⊕A[0, 2]⊕A[0, 3] = A[0, 4]⊕ 0xff . . . f

A[2, 0]⊕A[2, 1]⊕A[2, 2]⊕A[2, 3] = 0xff . . . f

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

1,40,34,23,12,0

3,42,31,20,14,0

0,44,33,22,11,0

2,41,30,24,13,0

4,43,32,21,10,0

3,14,00,41,32,2

0,31,22,13,04,4

2,03,44,30,21,1

4,20,11,02,43,3

1,42,33,24,10,0

χ .ι

θ χ .ι

π .ρ

π .ρ

1,4

1,3

1,2

1,1

1,0

1,40,34,23,12,0

3,42,31,20,14,0

0,44,33,22,11,0

2,41,30,24,13,0

4,43,32,21,10,0

1,40,34,23,12,0

3,42,31,20,14,0

0,44,33,22,11,0

2,41,30,24,13,0

4,43,32,21,10,0

4,43,42,40,4

4,33,32,30,3

4,23,22,20,2

4,13,12,10,1

4,03,02,00,0

θ

Fig. 7: Keccak state for 2-round linearization with degree of freedom 64 [8]

Now, to linearize the second round we need to handle θ of second round.
But for this the positions of the variables after first round χ need to be closely
handles as would change due to ρ and π in the first round. Therefore to make
two rounds linear the variables should satisfy the conditions as below:

A[2, 0]≪62 = A[0, 0]⊕A[2, 2]≪43

A[2, 1]≪6 = S[0, 1]≪36 ⊕A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪41 ⊕A[2, 0]≪62

It has been shown in [8] that the above system of equations has 128 degrees of
freedom. However, for the SymSum property, we have the additional restriction of
self-symmetric inputs which lead to revisiting the system of equations as below.
The main idea is to rewrite the equations considering half of the state and then
extend the solutions to the other half thereby always keeping the over-all solution
self-symmetric.

A[0, 0, k]⊕A[0, 1, k]⊕A[0, 2, k]⊕A[0, 3, k] = A[0, 4, k]⊕ 0xff . . . f

A[2, 0, k]⊕A[2, 1, k]⊕A[2, 2, k]⊕A[2, 3, k] = 0xff . . . f
(9)

Here k ∈ {0, 1, . . . , 31}. Similarly, to make the second round linear the rela-
tions are rephrased w.r.t a 32-lane state as follows:

A[2, 0, k]≪30 = A[0, 0, k]⊕A[2, 2, k]≪11

A[2, 1, k]≪6 = S[0, 1, k]≪4 ⊕A[2, 3, k]≪15

A[2, 2, k]≪11 = A[0, 2, k]≪3

A[2, 3, k]≪15 = A[0, 3, k]≪9 ⊕A[2, 0, k]≪30

(10)

From the above equations, we get the first 32 slices that are as per our require-
ment, therefore, we take a copy of this state and make them the last 32 slices.
By doing this the degree of freedom will be 64 because we have 8× 32 variables
and 6×32 equations. Accordingly, the degree of freedom is 8×32−6×32. Hence
for SHAKE128, we get the SymSum for 9 rounds with complexity 264.

5 Experimental Validation

In this section, we present experimental validation of some of the claims furnished
above. In particular, we choose SHAKE128 as it has the smallest capacity part
allowing for more control over the input. However, the attacks can easily be
extended onto other SHA3 variants with proper adjustments. In the following we
demonstrate an attack on 6-rounds of SHAKE128 using the 1-round linearization
and hash-inverse strategy. Due to 2-round extension, the degree of 6-rounds
reduces to 26−2 = 16 and by Corollary 1, the 16th order vectorial derivative will
exhibit SymSum property.

Fig. 6b shows input state for SHAKE128. Here orange, white, light gray lanes
are variable, constant and 0’s (that is also capacity part of SHAKE128) respec-
tively. Here, we have taken first and third column as variables which satisfies
the conditions as per Equation (9). The input base message for our experiment
is shown below:

Table 2 shows the full Keccak State, where **** is the variable nibble that
generates individual messages by altering their values. To maintain the Self-
Symmetry **** and **** should be the equivalent. To make one round linear

8bd9162e 8bd9162e 1245c1c7 1245c1c7 0a3f3940 0a3f3940 eb6e955a eb6e955a 61d62226 61d62226

64cf1036 64cf1036 36da615c 36da615c 3d3b488a 3d3b488a e86d0018 e86d0018 1b16874d 1b16874d

64cf1036 64cf1036 44bbe571 44bbe571 0d0b9c27 0d0b9c27 72f3c98c 72f3c98c 53598e96 53598e96

ebc29253 ebc29253 75f22314 75f22314 92d8c5f9 92d8c5f9 372772f3 372772f3 3839af6d 3839af6d

b185e09f b185e0

each message generated by changing **** should satisfy the condition described
above thus the value of † † †† and † † †† will modify accordingly.

Table 2: Representing Keccak State
****9162e ****9162e 1245c1c7 1245c1c7 0a3f3940 0a3f3940 eb6e955a eb6e955a 61d62226 61d62226

64cf1036 64cf1036 36da615c 36da615c 3d3b488a 3d3b488a e86d0018 e86d0018 1b16874d 1b16874d

64cf1036 64cf1036 44bbe571 44bbe571 0d0b9c27 0d0b9c27 72f3c98c 72f3c98c 53598e96 53598e96

† † ††9253 † † ††9253 75f22314 75f22314 92d8c5f9 92d8c5f9 372772f3 372772f3 3839af6d 3839af6d

b185e09f b185e09f 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

By changing **** values of the input base message, 216 individual messages
were produced and inputted to 6-round SHAKE128 with output hash-size of 320.
For each of the hash-values, apply χ−1 ◦ ι−1 and compute the output-sum. We
witnessed ZeroSum with complexity 217. and SymSum with 216 that confirms the
expected outcome predicted by theoretical arguments.

6 Discussion

In this work, we have extended the classical SymSum distinguisher up to 3 rounds
by applying linear structures and the χ−1 trick. Together, we have an advantage
of 3 rounds on almost all previously reported derivative based distinguishers.

One of the most important observations was the shift in the highest degree
reachable by TYPE-II monomials which are fundamental to achieving a round-
constant independent function thereby being the basis of the SymSum distin-
guisher. As dictated by Theorem 2, irrespective of the number (≥ 1) of rounds
linearized SymSum loses its 4 factor advantage over ZeroSum. However, that is
a little price to pay against the increase in the number of rounds penetrated.
A comparison among the various approaches that extend the SymSum distin-
guisher is furnished in Fig. 8. The comparisons are provided for 7, 8, 9 and 10
rounds for each variant of SHA3. As one can observe for SHA3-224 and SHA3-256,
the best distinguisher in terms if #Rounds is still the classical SymSum. This is
due to the fact that χ−1 is not applicable for SHA3-224 and SHA3-256 as the
output hash value length is < 320 bits which is minimum requirement for ap-
plying χ−1 on the hash-digest. Another observation is that for SHA3-384/512

and SHAKE128/256, the maximum rounds are reached using χ−1 technique over
classical SymSum. This is attributed to the degrees of freedom that is available
when we just augment classical SymSum with χ−1 technique. On the other hand,
linear structures lead to drastic reduction in degrees of freedom. Also, it can be

1

2

4

8

16

32

64

128

256

512

7 8 9 10

C
la

ss
ic

al

C
la

ss
ic

al

C
la

ss
ic

al

1
 L

in
ea

r
R

o
u

n
d

1
 L

in
ea

r
R

o
u

n
d

2
Li

n
ea

r
R

o
u

n
d

lo
g 2

C
o

m
p

le
xi

ty

Number of Rounds

SHA3-224

127

64

32

255

127

511

1

2

4

8

16

32

64

128

256

512

7 8 9 10

C
la

ss
ic

al

C
la

ss
ic

al

C
la

ss
ic

al

1
 L

in
e

ar
 R

o
u

n
d

1
Li

n
ea

r
R

o
u

n
d

2
Li

n
ea

r
R

o
u

n
dlo
g 2

C
o

m
p

le
xi

ty

Number of Rounds

SHA3-256

127

64

32

255

128

511

1

2

4

8

16

32

64

128

256

512

7 8 9 10

C
la

ss
ic

al

C
la

ss
ic

al

In
ve

rs
e

χ

In
ve

rs
e

χ

In
ve

rs
e

χ

1
Li

n
ea

r
R

o
u

n
d

1
 L

in
ea

r
R

o
u

n
d

1
Li

n
ea

r
R

o
u

n
d

 +
 in

ve
rs

e
χ

1
Li

n
ea

r
R

o
u

n
d

 +
 in

ve
rs

e
χ

2L
in

ea
r

R
o

u
n

d

2L
in

ea
r

R
o

u
n

d
 +

in
ve

rs
e

χ

2L
in

ea
r

R
o

u
n

d
 +

in
ve

rs
e

χ

lo
g 2

C
o

m
p

le
xi

ty

Number of Rounds

SHA3-384

127

63 64

32 32

16

255

127
128

64

32

255

1

2

4

8

16

32

64

128

256

512

7 8 9 10

C
la

ss
ic

al

C
la

ss
ic

al

In
ve

rs
e

χ

In
ve

rs
e

χ

In
ve

rs
e

χ

1
Li

n
ea

r
R

o
u

n
d

1
Li

n
ea

r
R

o
u

n
d

 +
 in

ve
rs

e
χ

1
Li

n
ea

r
R

o
u

n
d

 +
 in

ve
rs

e
χ

lo
g 2

C
o

m
p

le
xi

ty

Number of Rounds

SHA3-512

127

63 64

32

255

127

64

255

1

2

4

8

16

32

64

128

256

512

7 8 9 10

C
la

ss
ic

al

C
la

ss
ic

al

C
la

ss
ic

al

In
ve

rs
e

χ

In
ve

rs
e

χ

In
ve

rs
e

χ

In
ve

rs
e

χ

1
Li

n
ea

r
R

o
u

n
d

1
Li

n
ea

r
R

o
u

n
d

1
Li

n
ea

r
R

o
u

n
d

 +
 in

ve
rs

e
χ

1
 L

in
ea

r
R

o
u

n
d

 +
 in

ve
rs

e
χ

1
Li

n
ea

r
R

o
u

n
d

 +
 in

ve
rs

e
χ

2L
in

ea
r

R
o

u
n

d

2L
in

ea
r

R
o

u
n

d

2L
in

ea
r

R
o

u
n

d
 +

in
ve

rs
e

χ

2L
in

ea
r

R
o

u
n

d
 +

in
ve

rs
e

χ

2L
in

ea
r

R
o

u
n

d
 +

in
ve

rs
e

χ

lo
g 2

C
o

m
p

le
xi

ty

Number of Rounds

SHAKE 128

127

63 64

32 32

16

25 5

127
128

64 64

32

511

255

128

64

511

1

2

4

8

16

32

64

128

256

512

7 8 9 10

C
la

ss
ic

al

C
la

ss
ic

al

C
la

ss
ic

al

In
ve

rs
e

χ

In
ve

rs
e

χ

In
ve

rs
e

χ

In
ve

rs
e

χ

1
Li

n
ea

r
R

o
u

n
d

1
Li

n
ea

r
R

o
u

n
d

1
Li

n
ea

r
R

o
u

n
d

 +
 in

ve
rs

e
χ

1
Li

n
ea

r
R

o
u

n
d

 +
 in

ve
rs

e
χ

2L
in

ea
r

R
o

u
n

d

2
Li

n
ea

r
R

o
u

n
d

 +
in

ve
rs

e
χ

2L
in

ea
r

R
o

u
n

d
 +

in
ve

rs
e

χ

lo
g 2

C
o

m
p

le
xi

ty

Number of Rounds

SHAKE256

127

63 64

32 32

16

255

127128

64

32

511

255

511

Fig. 8: Comparison of SHA3 variants for different approaches as applying χ−1,
1-round linearization, 1-round linearization + χ−1, 2-round linearization and
2-round linearization + χ−1 with classical SymSum distinguisher

noted that SymSum always enjoys a degree 2 advantage as predicted by the results
discussed earlier. However, for the same number of round ZeroSum always has a
better degree of freedom for well-understood reason of not having to conform to
the self-symmetry constraint.

The maximum degree of freedom for different variants and approaches is
depicted in Table 3. The table also shows the corresponding slice/state config-
uration for achieving that degree of freedom. Moreover, the constraints to be
applied on the slice variables to fulfill the condition for 1-round linearization
is also exhibited in the table. Similar data is furnished in Table 4 for 2-round
linearization. It is worth mentioning that for SHA3-512 2-round linearization is

Table 3: Slice configuration, conditions and maximum degree of freedom for 1-
round linearization of SHA3 variants. Orange, white and gray represent variable,
constant and 0. Here we give one of the possible slice configurations and corre-
sponding conditions and maximum degree of freedom.

Variant Slice Configuration Restrictions on variables
Degree of
Freedom

SHAKE128 A[0, 4] = α1 ⊕
3∑

i=0

A[0, i]

A[j, 3] = α2 ⊕
2∑

i=0

A[j, i] (j ∈ {2, 3})

2224

SHAKE256 A[0, 3] = α1 ⊕
2∑

i=0

A[0, i]

A[j, 2] = α2 ⊕
1∑

i=0

A[j, i] (j ∈ {2, 3})

2160

SHA3-224 A[0, 3] = α1 ⊕
2∑

i=0

A[0, i]

A[2, 3] = α2 ⊕
2∑

i=0

A[2, i]

2192

SHA3-256 A[0, 3] = α1 ⊕
2∑

i=0

A[0, i]

A[j, 2] = α2 ⊕
1∑

i=0

A[j, i] (j ∈ {2, 3})

2160

SHA3-384 A[0, 2] = α1 ⊕
1∑

i=0

A[0, i]

A[2, 2] = α2 ⊕
1∑

i=0

A[2, i]

2128

SHA3-512 A[0, 1] = α1 ⊕A[0, 0]
A[j, 1] = α2 ⊕A[j, 0] (j ∈ {2, 3})

264

Table 4: Slice configuration, conditions and degree of freedom for 2-round lin-
earization of SHA3 variants. Orange, white, light gray and dark gray represent
variable, constant, 0 and 1 respectively. Here we give one of the possible slice
configurations and corresponding conditions and maximum degree of freedom.
Note that this strategy is not applicable for SHA3 512

Variant Slice Configuration Restrictions on variables
Degree of
Freedom

SHAKE128

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[0, 0]⊕A[0, 1]⊕A[0, 2]⊕A[0, 3] = 0xff...f

A[2, 0]⊕A[2, 1]⊕A[2, 2]⊕A[2, 3] = 0xff...f

A[2, 0]≪30 = A[0, 0]⊕A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4 ⊕A[2, 3]≪15

A[2, 2]≪11 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪9 ⊕A[2, 0]≪30

264

SHAKE256

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[i, 0]⊕A[i, 1]⊕A[i, 2] = 0, i = 0, 2
A[2, 0]≪30 = A[0, 0]⊕A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4

A[2, 2]≪11 = A[0, 2]≪3

232

SHA3-224

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[0, 0]⊕A[0, 1]⊕A[0, 2]⊕A[0, 3] = A[0, 4]⊕ 0

A[2, 0]⊕A[2, 1]⊕A[2, 2]⊕A[2, 3] = 0

A[2, 0]≪30 = A[0, 0]⊕A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4 ⊕A[2, 3]≪15

A[2, 2]≪11 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪9 ⊕A[2, 0]≪30

264

SHA3-256

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[i, 0]⊕A[i, 1]⊕A[i, 2] = 0, i = 0, 2
A[2, 0]≪30 = A[0, 0]⊕A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4

A[2, 2]≪11 = A[0, 2]≪3

232

SHA3-384

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

A[i, 0]⊕A[i, 1]⊕A[i, 2] = 0, i = 0, 2
A[2, 0]≪30 = A[0, 0]⊕A[2, 2]≪11

A[2, 1]≪6 = A[0, 1]≪4

A[2, 2]≪11 = A[0, 2]≪3

232

not applicable as the rate part is substantially lower leaving very less room to
formulate the necessary constraints. It is easy to appreciate that the results re-
ported here are better than ZeroSum and classical SymSum. Interestingly, even
the simple χ−1 trick helps classical SymSum to breach the 10-round barrier (as
stated in [17]) which is now possible to be distinguished with 2511 calls to SHA3.

7 Conclusion

This work aims to combine two very interesting results on SHA3 namely the
SymSum property and the idea of linear structures to devise the best distinguishers
on the SHA3 standard in terms of complexity and number of rounds penetrated.
The main contribution lies in studying the effect of linearization on the core
SymSum property. The results show that due to the effect of linear structures
the factor of four advantage that SymSum enjoys over ZeroSum is reduced to
two. Theoretical arguments are provided to explain this reduction. A simple
χ inversion trick is also devised on applicable variants to penetrate one round
further. With the combined power of all strategies, this work reaches up to 9
rounds of certain SHA3 variants with a practically feasible complexity of 264.

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced keccak-f and for
the core functions of luffa and hamsi. rump session of Cryptographic Hardware
and Embedded Systems-CHES 2009, 67 (2009)

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. Ecrypt Hash
Workshop 2007 (May 2007)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 sub-
mission. Submission to NIST (Round 3) (2011), http://keccak.noekeon.org/

Keccak-submission-3.pdf

4. Boura, C., Canteaut, A., Cannière, C.D.: Higher-order differential properties of
keccak and Luffa. In: FSE. Lecture Notes in Computer Science, vol. 6733, pp.
252–269. Springer (2011)

5. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced keccak sponge function. In:
EUROCRYPT (1). Lecture Notes in Computer Science, vol. 9056, pp. 733–761.
Springer (2015)

6. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round keccak-f permu-
tation. IACR Cryptology ePrint Archive 2011, 23 (2011)

7. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned rebound attack: Application to kec-
cak. In: FSE. Lecture Notes in Computer Science, vol. 7549, pp. 402–421. Springer
(2012)

8. Guo, J., Liu, M., Song, L.: Linear structures: Applications to cryptanalysis of
round-reduced keccak. In: ASIACRYPT (1). Lecture Notes in Computer Science,
vol. 10031, pp. 249–274 (2016)

9. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round keccak sponge function. In: EUROCRYPT (2). Lecture Notes in
Computer Science, vol. 10211, pp. 259–288 (2017)

http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf

10. Jean, J., Nikolic, I.: Internal differential boomerangs: Practical analysis of the
round-reduced keccak-f permutation. In: FSE. Lecture Notes in Computer Science,
vol. 9054, pp. 537–556. Springer (2015)

11. Kuila, S., Saha, D., Pal, M., Chowdhury, D.R.: Practical distinguishers
against 6-round keccak-f exploiting self-symmetry. In: Progress in Cryptology -
AFRICACRYPT 2014 - 7th International Conference on Cryptology in Africa,
Marrakesh, Morocco, May 28-30, 2014. Proceedings. pp. 88–108 (2014)

12. Li, T., Sun, Y., Liao, M., Wang, D.: Preimage attacks on the round-reduced kec-
cak with cross-linear structures. IACR Trans. Symmetric Cryptol. 2017(4), 39–57
(2017)

13. Liu, T., Sun, Y.: Preimage attacks on round-reduced keccak-224/256 via an allo-
cating approach. IACR Cryptology ePrint Archive 2019, 248 (2019)

14. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced keccak. In: FSE. Lecture Notes in Computer Science, vol. 8424, pp. 241–
262. Springer (2013)

15. Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round kec-
cak. In: INDOCRYPT. Lecture Notes in Computer Science, vol. 7107, pp. 236–254.
Springer (2011)

16. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced keccak.
IACR Cryptology ePrint Archive 2017, 128 (2017)

17. Saha, D., Kuila, S., Chowdhury, D.R.: Symsum: Symmetric-sum distinguishers
against round reduced SHA3. IACR Trans. Symmetric Cryptol. 2017(1), 240–258
(2017)

18. of Standards, N.I., Technology.: SHA-3 : Cryptographic hash algorithm competi-
tion, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

	New Results on the SymSum Distinguisher on Round-Reduced SHA3

