132 research outputs found

    Stimulant treatment history predicts frontal-striatal structural connectivity in adolescents with attention-deficit/hyperactivity disorder

    Get PDF
    Contains fulltext : 168155.pdf (publisher's version ) (Closed access)Diffusion tensor imaging (DTI) has revealed white matter abnormalities in individuals with attention-deficit/hyperactivity disorder (ADHD). Stimulant treatment may affect such abnormalities. The current study investigated associations between long-term stimulant treatment and white matter integrity within the frontal-striatal and mesolimbic pathways, in a large sample of children, adolescents and young adults with ADHD. Participants with ADHD (N=172; mean age 17, range 9-26) underwent diffusion-weighted MRI scanning, along with an age- and gendermatched group of 96 control participants. Five study-specific white matter tract masks (orbitofrontal-striatal, orbitofrontal-amygdalar, amygdalar-striatal, dorsolateral-prefrontal-striatal and medialprefrontal- striatal) were created. First we analyzed case-control differences in fractional anisotropy (FA) and mean diffusivity (MD) within each tract. Second, FA and MD in each tract was predicted from cumulative stimulant intake within the ADHD group. After correction for multiple testing, participants with ADHD showed reduced FA in the orbitofrontal-striatal pathway (p=0.010, effect size=0.269). Within the ADHD group, higher cumulative stimulant intake was associated with lower MD in the same pathway (p=0.011, effect size=-0.164), but not with FA. The association between stimulant treatment and orbitofrontal-striatal MD was of modest effect size. It fell short of significance after adding ADHD severity or ADHD type to the model (p=0.036 and p=0.094, respectively), while the effect size changed little. Our findings are compatible with stimulant treatment enhancing orbitofrontal-striatal white matter connectivity, and emphasize the importance of the orbitofrontal cortex and its connections in ADHD. Longitudinal studies including a drug-naive baseline assessment are needed to distinguish between-subject variability in ADHD severity from treatment effects

    Stimulant treatment profiles predicting co-occurring substance use disorders in individuals with attention-deficit/hyperactivity disorder

    Get PDF
    Adolescents with attention-deficit/hyperactivity disorder (ADHD) are at increased risk of developing substance use disorders (SUDs) and nicotine dependence (ND). It remains unclear whether and how stimulant treatment may affect this risk. We aimed to investigate how stimulant use profiles influence the risk of SUDs and ND, using a novel data-driven community detection analysis to construct different stimulant use profiles. Comprehensive lifetime stimulant prescription data and data on SUDs and ND were available for 303 subjects with ADHD and 219 controls, with a mean age 16.3 years. Community detection was used to define subgroups based on multiple indicators of treatment history, start age, treatment duration, total dose, maximum dose, variability, stop age. In stimulant-treated participants, three subgroups with distinct medication trajectories were distinguished (late-and-moderately dosed, n = 91; early-and-moderately dosed, n = 51; early-and-intensely dosed, n = 103). Compared to stimulant-naïve participants (n = 58), the early-and-intense treatment group had a significantly lower risk of SUDs and ND (HR = 0.28, and HR = 0.29, respectively), while the early-and-moderate group had a significantly lower risk of ND only (HR = 0.30). The late-and-moderate group was at a significantly higher risk of ND compared to the other two treatment groups (HR = 2.66 for early-and-moderate, HR = 2.78 for early-and-intense). Our findings show that in stimulant-treated adolescents with ADHD, long-term outcomes are associated with treatment characteristics, something that is often ignored when treated individuals are compared to untreated individuals.</p

    Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings

    Get PDF
    Contains fulltext : 168270.pdf (publisher's version ) (Closed access)BACKGROUND: Data on structural brain alterations in patients with attention-deficit/hyperactivity disorder (ADHD) have been inconsistent. Both ADHD and brain volumes have a strong genetic loading, but whether brain alterations in patients with ADHD are familial has been underexplored. We aimed to detect structural brain alterations in adolescents and young adults with ADHD compared with healthy controls. We examined whether these alterations were also found in their unaffected siblings, using a uniquely large sample. METHODS: We performed voxel-based morphometry analyses on MRI scans of patients with ADHD, their unaffected siblings and typically developing controls. We identified brain areas that differed between participants with ADHD and controls and investigated whether these areas were different in unaffected siblings. Influences of medication use, age, sex and IQ were considered. RESULTS: Our sample included 307 patients with ADHD, 169 unaffected siblings and 196 typically developing controls (mean age 17.2 [range 8-30] yr). Compared with controls, participants with ADHD had significantly smaller grey matter volume in 5 clusters located in the precentral gyrus, medial and orbitofrontal cortex, and (para)cingulate cortices. Unaffected siblings showed intermediate volumes significantly different from controls in 4 of these clusters (all except the precentral gyrus). Medication use, age, sex and IQ did not have an undue influence on the results. LIMITATIONS: Our sample was heterogeneous, most participants with ADHD were taking medication, and the comparison was cross-sectional. CONCLUSION: Brain areas involved in decision making, motivation, cognitive control and motor functioning were smaller in participants with ADHD than in controls. Investigation of unaffected siblings indicated familiality of 4 of the structural brain differences, supporting their potential in molecular genetic analyses in ADHD research

    Decreased Left Caudate Volume Is Associated with Increased Severity of Autistic-Like Symptoms in a Cohort of ADHD Patients and Their Unaffected Siblings

    Get PDF
    Autism spectrum disorder (ASD) symptoms frequently occur in individuals with attention-deficit/ hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural brain correlates, knowledge of the structural brain profile of individuals with ADHD with raised ASD symptoms is limited. The presence of ASD-like symptoms was measured by the Children's Social Behavior Questionnaire (CSBQ) in a sample of typically developing controls (n = 154), participants with ADHD (n = 239), and their unaffected siblings (n = 144) between the ages of 8 and 29. Structural magnetic resonance imaging (MRI) correlates of ASD ratings were analysed by studying the relationship between ASD ratings and grey matter volumes using mixed effects models which controlled for ADHD symptom count and total brain volume. ASD ratings were significantly elevated in participants with ADHD relative to controls and unaffected siblings. For the entire group (participants with ADHD, unaffected siblings and TD controls), mixed effect models revealed that the left caudate nucleus volume was negatively correlated with ASD ratings (t = 2.83; P = 0.005). The current findings are consistent with the role of the caudate nucleus in executive function, including the selection of goals based on the evaluation of action outcomes and the use of social reward to update reward representations. There is a specific volumetric profile associated with subclinical ASD-like symptoms in participants with ADHD, unaffected siblings and controls with the caudate nucleus and globus pallidus being of critical importance in predicting the level of ASD-like symptoms in all three groups.</p

    Report of the JRC’s Descriptor 1 workshop to support the review of the Commission Decision 2010/477/EU concerning MSFD criteria for assessing Good Environmental Status

    Get PDF
    The MSFD workshop on biodiversity (MSFD D1), held in Ispra JRC (7th-9th of September 2015) aimed to provide clear proposals and conclusions on some of the outstanding issues identified in the D1 review manual (May 2015 consultation version: https://circabc.europa.eu/w/browse/46d2b7ba-d2fd-4b3c-9eaf-18c7cb702b53) in the broader context of support to the review of Commission Decision 2010/477/EU. This report is complementing the Commission Decision 2010/477/EU review manual (JRC96521) and presents the result of the scientific and technical review concluding phase 1 of the review of the Commission Decision 2010/477/EU in relation to Descriptor 1. The review has been carried out by the EC JRC together with experts nominated by EU Member States, and has considered contributions from the GES Working Group in accordance with the roadmap set out in the MSFD implementation strategy (agreed on at the 11th CIS MSCG meeting). The main issues addressed and tackled in this workshop’s report are: - Common lists of elements for the biodiversity assessments (species & habitats) o Review of the “Biological Features” in Table 1 in the MSFD Annex III in relation to D1 requirements o Review of the “Habitat Types” entries in Table 1 in the MSFD Annex III in relation to D1 requirements - Selection/deselection criteria for the inclusion of species and habitats in a group - Updated criteria and indicators for D1 - Habitat/Bird Directives, WFD, Common Fisheries Policy and D1 o Use of species and habitats for the MSFD needs that are already included in other legislation and agreements o Links between status classification approaches (FCS vs GES, GEcS vs GES) - Streamlining of assessments, including scales of assessments - Cross-cutting issues related to D1 implementation o Aggregation rules within D1 criteria/indicators o Final GES integration across descriptors assessments Steps forward and technical needs for D1.JRC.H.1-Water Resource

    Enlarged striatal volume in adults with ADHD carrying the 9-6 haplotype of the dopamine transporter gene DAT1

    Get PDF
    The dopamine transporter gene, DAT1 (SLC6A3), has been studied extensively as a candidate gene for attention-deficit/hyperactivity disorder (ADHD). Different alleles of variable number of tandem repeats (VNTRs) in this gene have been associated with childhood ADHD (10/10 genotype and haplotype 10-6) and adult ADHD (haplotype 9-6). This suggests a differential association depending on age, and a role of DAT1 in modulating the ADHD phenotype over the lifespan. The DAT1 gene may mediate susceptibility to ADHD through effects on striatal volumes, where it is most highly expressed. In an attempt to clarify its mode of action, we examined the effect of three DAT1 alleles (10/10 genotype, and the haplotypes 10-6 and 9-6) on bilateral striatal volumes (nucleus accumbens, caudate nucleus, and putamen) derived from structural magnetic resonance imaging scans using automated tissue segmentation. Analyses were performed separately in three cohorts with cross-sectional MRI data, a childhood/adolescent sample (NeuroIMAGE, 301 patients with ADHD and 186 healthy participants) and two adult samples (IMpACT, 118 patients with ADHD and 111 healthy participants; BIG, 1718 healthy participants). Regression analyses revealed that in the IMpACT cohort, and not in the other cohorts, carriers of the DAT1 adult ADHD risk haplotype 9-6 had 5.9 % larger striatum volume relative to participants not carrying this haplotype. This effect varied by diagnostic status, with the risk haplotype affecting striatal volumes only in patients with ADHD. An explorative analysis in the cohorts combined (N = 2434) showed a significant gene-by-diagnosis-by-age interaction suggesting that carriership of the 9-6 haplotype predisposes to a slower age-related decay of striatal volume specific to the patient group. This study emphasizes the need of a lifespan approach in genetic studies of ADHD

    A 6-year follow-up of a large European cohort of children with attention-deficit/hyperactivity disorder-combined subtype:outcomes in late adolescence and young adulthood

    Get PDF
    Contains fulltext : 168183.pdf (publisher's version ) (Open Access)There are very few studies on the long-term outcome of children and adolescents with ADHD-combined type in Europe. The objective of the present study is to assess the 6-year outcome (including pharmacological treatment) of a large cohort of participants with ADHD-combined type (N = 347, mean age 11.4 years) in late adolescence and early adulthood. At study entry and follow-up (mean age 17.4 years), participants were comprehensively assessed on ADHD and comorbid disorders by structured psychiatric interviews and multi-informant questionnaires. Overall functioning was assessed by the Children's Global Assessment Scale. The retention rate was 75.6 %. The majority of participants (86.5 %) persisted in a DSM-5 ADHD diagnosis, 8.4 % had a subthreshold diagnosis, and 5.1 % remitted from the disorder at follow-up. Comorbidities decreased strongly; oppositional defiant disorder: 58 > 31 %, conduct disorder: 19 > 7 %. At follow-up, mood- and anxiety disorders were virtually non-existent following strict criteria (1-3 %). Percentage of children having had pharmacological treatment at any time increased from 79 to 91 %. On the Children's Global Assessment Scale, 48.5 % of participants were still functionally impaired at follow-up. Parental ADHD, higher ADHD symptom severity at baseline and higher parent-reported impairment at baseline positively predicted current ADHD symptom severity (R (2) = 20.9 %). Younger baseline age, higher ADHD symptom severity at baseline and higher parent-reported impairment at baseline were positively associated with poorer overall functioning (R (2) = 17.8 %). Pharmacological treatment had no (beneficial) impact on either ADHD symptom severity or overall functioning. Results confirm that ADHD is largely persistent into late adolescence with severity and family history for the disorder as important risk factors.11 p

    Distribution of Attention Modulates Salience Signals in Early Visual Cortex

    Get PDF
    Previous research has shown that the extent to which people spread attention across the visual field plays a crucial role in visual selection and the occurrence of bottom-up driven attentional capture. Consistent with previous findings, we show that when attention was diffusely distributed across the visual field while searching for a shape singleton, an irrelevant salient color singleton captured attention. However, while using the very same displays and task, no capture was observed when observers initially focused their attention at the center of the display. Using event-related fMRI, we examined the modulation of retinotopic activity related to attentional capture in early visual areas. Because the sensory display characteristics were identical in both conditions, we were able to isolate the brain activity associated with exogenous attentional capture. The results show that spreading of attention leads to increased bottom-up exogenous capture and increased activity in visual area V3 but not in V2 and V1

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Get PDF
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years

    Get PDF
    Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes
    corecore