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Abstract

Autism spectrum disorder (ASD) symptoms frequently occur in individuals with attention-

deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD

have differential structural brain correlates, knowledge of the structural brain profile of

individuals with ADHD with raised ASD symptoms is limited. The presence of ASD-like

symptoms was measured by the Children’s Social Behavior Questionnaire (CSBQ) in a

sample of typically developing controls (n = 154), participants with ADHD (n = 239), and

their unaffected siblings (n = 144) between the ages of 8 and 29. Structural magnetic res-

onance imaging (MRI) correlates of ASD ratings were analysed by studying the relation-

ship between ASD ratings and grey matter volumes using mixed effects models which

controlled for ADHD symptom count and total brain volume. ASD ratings were signifi-

cantly elevated in participants with ADHD relative to controls and unaffected siblings. For

the entire group (participants with ADHD, unaffected siblings and TD controls), mixed

effect models revealed that the left caudate nucleus volume was negatively correlated

with ASD ratings (t = 2.83; P = 0.005). The current findings are consistent with the role of

the caudate nucleus in executive function, including the selection of goals based on the

evaluation of action outcomes and the use of social reward to update reward representa-

tions. There is a specific volumetric profile associated with subclinical ASD-like symptoms

in participants with ADHD, unaffected siblings and controls with the caudate nucleus and
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globus pallidus being of critical importance in predicting the level of ASD-like symptoms in

all three groups.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) and autism spectrumdisorder (ASD) are
both severely impairing, highly heritable neurodevelopmental disorders [1,2] [3]. ASD is char-
acterised by impaired social and communicative skills as well as restricted and repetitive behav-
iours and interests, whereas ADHD is characterised by severe inattention and/or hyperactivity
and impulsivity [3]. Although the core features of both disorders appear to describe quite dif-
ferent phenotypes, elevated levels of ASD symptoms have been reported in ADHD, while ele-
vated ADHD symptoms have also been reported in ASD [1], [2,4–6] [7].

The presence of milder, subclinical ASD symptoms has been shown to be continuously dis-
tributed in the general population [2,8,9], although the neural substrates of this phenomenon
have yet to be explored in detail. The current study investigates subclinical ASD-like symptoms
in the ADHD population and their unaffected siblings. A shared aetiology betweenADHD and
ASD has been observed in many domains, with deficits in executive functions and motor speed
being linked to familial vulnerability for both ASD and ADHD [10–12]. Abnormalities in
reward processing are also common in both ADHD [13] and ASD [14], [15], while others have
documented an overlap of genetic factors that relate to both disorders [4] [16]. Brain volume
abnormalities are important indicators of pathophysiological processes that likely reflect disor-
der aetiology [17]. A number of meta-analyses have found reduced brain volume in ADHD
(with ages ranging from ~10–37 years of age) [18], [19,20]. Regional volume reductions in
ADHD have been localised to the globus pallidus, putamen, caudate nucleus, lentiform gyrus
and cerebellum [18], [19,20] [21]. Furthermore, both increasing age and use of stimulant medi-
cation were found to be independently associated with normalisation of grey matter (GM) vol-
ume towards that of healthy controls [19]. With regard to dimensional findings, decreased
frontal and temporal GM volumes have been associated with increased ratings of attention
problems in children with ADHD [22].

Abnormalities of regional volume have been found in ASD. Cerebellum [23], amygdala-hip-
pocampal complex [24–27], frontotemporal regions [25,26,28], caudate nucleus [29,30], and
nucleus accumbens [31] have all been noted to have reduced volume in individuals with ASD
relative to controls, while the superior temporal gyrus (STG) has been found to be significantly
increased in ASD [21]. The caudate nucleus has been found to have both reduced volume in
ASD relative to controls [29,30], as well as increased volumes relative to controls [17,30,32–
34]. Hemispheric asymmetry also plays a role in ASD, as previous work has suggested left-
hemisphere dysfunction [35,36], while other studies have pointed to predominant right hemi-
sphere impairment [37,38]. Thus, the direction of a laterality effect has been inconsistent across
the literature. Nevertheless, some studies have indicated that there is a lower degree “leftward”
cortical symmetry in ASD relative to controls [39] and that the left hemisphere is under tighter
genetic control than the right hemisphere [40] which may be relevant for a highly heritable dis-
order such as ASD. Laterality has also been used in machine learning to attempt to discriminate
betweenASD cases and controls [41].

Clinical symptoms have been associated with anatomic differences, for example, abnormali-
ties in Broca's and Wernike's areas have been related to impaired language and social commu-
nication [42]. Additionally, frontotemporal regions and the amygdala have been associated
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with abnormalities in socio-emotional processing [33,43,44], while the frontostriatal system
has been linked to repetitive and stereotyped behaviours [29,34] in individuals with ASD.

No study to date has aimed to identify the regional volumetric correlates of elevated ASD
symptoms within ADHD. In previous work using the same cohort we established that ASD rat-
ings in ADHD were predicted by the interaction between global white matter (WM) and global
GM volumes, with increasing ASD ratings associated with greater GM volume [45]. We extend
this work by studying the relationship betweenASD ratings and regional volumetric measures
of subcortical greymatter structures in the same cohort of ADHD participants, their unaffected
siblings and typically developing controls. Because of the previously noted effects of laterality
on ASD symptoms [41], and also in light of the inconsistencies within the literature (specifi-
cally the direction of possible laterality effects) we wanted to examine this question in the large
sample size available in the current cohort. Overall, the current cohort allows for a rare oppor-
tunity to study ADHD and ASD-like symptoms in the same individual with a view to under-
standing the biological underpinnings of the high comorbidity of these two disorders.

Structural and functionalMRI studies have found the caudate nucleus to be altered (with
both increased volume and activation and decreased volume and activation relative to controls)
in ASD and to be associated with dysfunctions in multiple domains related to ASD, such as
repetitive and stereotyped behaviour [46], reward processing [47] and executive function [48],
[49]. Based on this literature, our hypothesis was that the caudate nucleus may have a signifi-
cant role [34,46], [1,50], while structures such as the cerebellum [23], amygdala-hippocampal
complex [24–27], frontotemporal regions [25,26,28], [29,30], and nucleus accumbens [31],
may have a contributory but potentially subsidiary role, in predicting the extent to which sub-
clinical ASD-like symptoms are expressed in patients with ADHD but not in their unaffected
siblings or controls. However, it should be borne in mind that results to date have not been
consistent, with a recent longitudinal study within a similar age range to the present study
demonstrating no group differences in caudate volume between an ASD and typically develop-
ing group [51], whereas a study in children indicated an increase in the growth rate of striatal
structures in individuals with autism compared with control subjects with an effect that was
specific to the caudate nucleus, where growth rate was doubled [52]. Nevertheless, overall a
meta-analysis by Stanfield et al. [53] found that the total brain, cerebral hemispheres, cerebel-
lum and caudate nucleus were increased in volume, whereas the corpus callosum area was
reduced. A subsequent meta-analysis [54] closely matched these findings suggesting a conver-
gence between volumetric and VBM data that adds support to the potential role of the caudate
nucleus in the pathophysiology of autism.

Previous research has also indicated that frontostriatal areas in general play an important
role in modulating reward and motivation which in turn influence the expression of ASD
symptom in ADHD [55], [47]. Subcortical brain volumes were segmented to investigate the
role of the caudate, while also allowing for the investigation of other structures that have been
less frequently implicated in ASD symptoms, such as the globus pallidus, the nucleus accum-
bens, putamen [26], thalamus [56], brain stem [57], hippocampus, and amygdala [58].

Methods

Participants

Participants were selected from a follow-up (2009–2012) of the Dutch part of the International
Multicenter ADHDGenetics (IMAGE) study, performed between 2003–2006 (as described in
detail in [59–62]. Written informed consent forms were obtained for all participants. MRI was
part of the NeuroIMAGE protocol, while no MRI was performed for the original IMAGE sam-
ple. Next of kin (parents) signed written informed consent forms for participants under 12
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years of age. For children 12–18 years of age, next of kin (parents) as well as participants them-
selves signed written informed consent forms. The study was approved by the local medical
ethical committee (Centrale CommissieMensgebonden Onderzoek Regio Arnhem-Nijmegen
and the ethics committee of the VUMedical Center in Amsterdam).

At first enrolment for IMAGE, 365 families with at least one child with combined type
ADHD and at least one biological sibling (regardless of ADHD diagnosis) were recruited, in
addition to 148 control families with at least one child, with no formal or suspectedADHD
diagnosis in any of the first-degree family members. Recruitment of ADHD families was
accomplished through probands with ADHD attending outpatient clinics in the regions
Amsterdam, Groningen, and Nijmegen, as well as a Vrije Universiteit Amsterdam (VUUniver-
sity) affiliated ADHD research institute. Control families were recruited through primary and
high schools in the same geographical regions as the participating ADHD families. All family
members, also those who did not participate in IMAGE, were invited for follow-up measure-
ment with a mean follow-up period of 5.9 years (SD = .72) in the NeuroIMAGE study (www.
neuroimage.nl). In order to balance the distribution of gender and age between the ADHD and
healthy control groups, additional girls with ADHD (any type; N = 50) and healthy control
boys (N = 50) were recruited for NeuroIMAGE. Inclusion criteria were the same for all partici-
pants, and largely consistent with IMAGE: participants had to be between 5–30 years, of Euro-
pean Caucasian descent, have an IQ� 70 and no diagnosis of autism, epilepsy, general
learning difficulties, brain disorders and known genetic disorders (such as Fragile X syndrome
or Down syndrome). Relating to the NeuroIMAGEMRI protocol, participants were excluded
if they were younger than 8 years or had any contra indication to MRI scanning (e.g. implanted
metal or medical devices, or possible pregnancy). 79% of participants from the IMAGE study
also participated in the NeuroIMAGE follow-up study with no evidence for selective attrition
[63]. Combined with newly recruited participants the NeuroIMAGE study tested a total of
1085 participants.

For the current study, participants were selected from the total data set when the following
data was available: a high quality T1 weightedMPRAGE image, complete information from
the Children’s Social Behavior Questionnaire (providing information on the autism spectrum
symptoms) [64], complete information from the Schedule for AffectiveDisorders and Schizo-
phrenia for School-Age Children—Present and LifetimeVersion (K-SADS-PL) and the Con-
ners ADHD questionnaire. IQ information and medication history were also required in order
to include participants in the current study. Participants with a subthreshold ADHD diagnosis
were excluded. A subthreshold ADHD subject is defined as a subject from a family with a
known ADHD history and at least one affected sibling during recruitment, and must also have
between 2 and 5 ADHD symptoms according to the Conners/K-SADS screen. A full descrip-
tion of the NeuroIMAGE study design is a paper by von Rhein et al. [63].

ADHD Diagnostic Assessment

To determineADHD diagnoses at the follow-up measurement, all participants in the study were
assessed using a combination of Conners' ADHD questionnaires [65–67] and a semi-structured
diagnostic interview. For participants usingmedication, ratings were obtained for children’s
functioningwhen off medication. A full description of the diagnostic algorithm is provided in
the Supplementary Information and also in a NeuroIMAGE study design paper [63].

ASD measures

The parent-reported Children’s Social and Behavior Questionnaire (CSBQ) contains 49 items
on a 3-point Likert scale. All items in the CSBQ are found in S2 Text. It contains items that
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refer directly to the DSM-IV criteria for autism, but it also captures more subtle symptoms of
ASD. Therefore, it is suitable for measuring behavioural problems in children with milder vari-
ants of ASD. CSBQ items are grouped into the following six subscales: (1) “Tuned” (tuning
emotions and behaviour to the current situation), (2) “Social interest” (social interest, motiva-
tion and reciprocity), (3) “Orientation” (orientation in space and time), (4) “Social understand-
ing” (ability to understand social context), (5) “Resistance” (fear and resistance to change) and
(6) “Stereotypy” (repetitive motor and sensory behaviour and stereotypy). The CSBQ has good
internal, test-retest and inter-rater reliability, and demonstrated convergent and divergent
validity [64]. Additionally, to assess the content validity of the CSBQ, it has previously been
compared to an autism screening instrument, the Autism Behavior Checklist (ABC) [68]. A
strong correlation of 0.75 was found between the total scores of both questionnaires in a large
Dutch population sample [69]. The CSBQ has also been compared with the Autism Diagnostic
Interview-Revised(ADI-R), Autism Diagnostic Observation Schedule (ADOS) and clinical
classification in children with mild and moderate intellectual disability. High coherence with
all three classificationmethods were reported [70].

Similar to previous studies [71,72], an aggregate score from four subscales, (1) Social interest,
(2) Social understanding, (3) Stereotypy and (4) Resistance, was used to capture the core ASD-
like symptoms. The remaining two CSBQ subscales (Tuned and Orientation) probe dysfunctional
social behaviours which, although characteristic for ASD, are also related to the ADHD dimen-
sions of hyperactivity/impulsivity and attention problems respectively [64]. In order to specifically
focus on ASD these subscales were not considered in the current study. We prospectively planned
to use four subscales to disentangle ASD and ADHD correlates. The current approach ensures
that a high score means that a participant has a substantial amount of symptoms that can be defi-
nitely characterized as ASD-like, as defined in the DSM.Without this approach there would be a
risk of obtaining a high ASD score that in reality would be a (hidden) high ADHD score.

Procedure

During the testing day, participants were motivated with short breaks, and at the end of the
day, children received a reward of €50 and a copy of their anatomical MRI scan. Informed con-
sent was signed by all participants (parents signed informed consent for participants under 12
years of age), and the study was approved by the local medical ethical committee (Centrale
CommissieMensgebonden Onderzoek Regio Arnhem-Nijmegen and the ethics committee of
the VUMedical Center in Amsterdam).
High Resolution T1 Structural Image Acquisition and Processing. Whole brain T1

weightedMPRAGE images were acquired at 1.5T using an 8 channel phased array headcoil on
a Siemens Sonata scanner at the VUUniversity in Amsterdam and a Siemens Avanto MR scan-
ner at the Donders Institute for Brain, Cognition and Behaviour in Nijmegen. A breakdown of
the distribution of subjects scanned at the two sites is included in S1 Table. Sequence parame-
ters were as follows: TI/TE/TR = 1000/2.95/2730ms, imagingmatrix 256 x 256, 176 slices,
voxel size 1 x 1 x 1 mm3, GRAPPA acceleration 2.
FIRST Structural Image Processing. The FIRST algorithmwas applied to separately esti-

mate the left and right volumes of eight regions; amygdala, hippocampus, nucleus accumbens,
caudate nucleus, putamen, pallidum, thalamus and brain stem. FIRST is part of FMRIB's Soft-
ware Library (FSL) and performs both registration and segmentation [73]. Within the FIRST
software, the Dice overlap measures (similarity coefficient) [74] ensures that for structures
with large surface-area-to-volume ratios, such as the caudate, small differences in surface error
are heavily penalized, since an average error of one voxel at the boundarywill substantially
affect the volume overlap [73].

Caudate Nucleus Volume and ASD-Like Symptoms in ADHD
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During registration, the input data (3D T1 images) were transformed to the MNI (Montreal
Neurological Institute) 152 standard space, by means of affine transformations based on 12
degrees of freedom [75–77]. This registration allowed intracranial volume (ICV) to be esti-
mated by scaling the volume of the MNI 152 brain with the determinant of the subject's inverse
affine transformation matrix, also known as the Atlas Scaling Factor [78].

After subcortical registration, a sub-corticalmask was applied, to locate the different subcor-
tical structures, followed by segmentation based on shape models and voxel intensities. Abso-
lute volumes of structures were calculated, taking into account the transformations made in
the first stage [73]. The following formula was used to compute normalised volumes of each
deep grey matter structure:

total GM volume of structure ðmm3Þ = ICV

An average of two T1 scans was used for volume calculation In most instances, an average
of two T1 scans, that were acquired on the same testing day, were used for volume calculation
(n = 509). For 28 individuals only one T1 scan was available for volume calculation.
Statistics. Our approach was to begin by developing an initial behavioural factors or

“external” model to determine which features, other than brain regions (i.e. “external” to the
brain), would affect ASD ratings, calculated as the log-transformed aggregate of the four CSBQ
subscales ('Social interest', 'Social understanding', 'Stereotypy' and 'Resistance').We used a
mixed-effects general linear model [79] with age, gender, diagnosis,MRI site, current medica-
tion status, IQ and their interactions with each other as potential fixed factors in the full exter-
nal model. Diagnosis was codedwith three levels; Control, Unaffected Sibling and ADHD.
MRI site was codedwith two levels for Amsterdam or Nijmegen. Site effects were previously
tested for in a NeuroIMAGE design paper that examinedmany aspects of the entire Neuro-
IMAGE cohort [63]. This design paper studied the grey matter volumes (GMV) for the two
sites and indicated that there is no significant site effect within the NeuroIMAGE cohort. Cur-
rent medication status was also codedwith two levels for currently on medication, or currently
not on medication. Because of the repeated measures within families inherent in our sampling
protocol and the known influence of ADHD symptoms on the variance in ASD ratings [80,81],
[61], [7], family (i.e. the unique family ID, with siblings from the same family having the same
ID) and total ADHD symptom count (which was calculated according to the algorithm
described in detail in S1 Text) were included as random effects in the analysis. By removing
effects in a stepwise manner, and assessing model fit using analysis of deviance tests on nested
models [79], we simplified the initial model. The final “external” model included significant
non-brain factors (age, gender and diagnosis) and all significant interactions.

Next, we developed an initial brain volumes model to determine which of the subcortical
brain regions under investigation significantly affected ASD ratings. We termed this an “inter-
nal” model as it contained only brain structures. Because of the previously found effects of
laterality on ASD symptoms [41], we separated brain regions, except for the brain stem, into
right and left hemispheres and analysed the two resulting models separately using ridge regres-
sion [82,83]. Our intention was to investigate right and left structures separately, with the
hypothesis based on the above cited literature that the two hemispheres would differ with
respect to the response variable of the model, which is ASD rating. A direct comparison of the
right and left hemispheres is useful to shed more light on this area.

Ridge regression is a robust way of dealing with the problem of variance inflation and
parameter mis-estimation associated with correlated explanatory variables [84], as were brain
region volumes in our study (right-sided correlations: 0.57�r�0.94; left-sided correlations:
0.58� r� 0.92). We followed the same removal/addition stepwise approach as with the
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external model to develop final left and final right internal models. To test if one model was
better than the other at predicting the data, we compared the final comprehensive right and
comprehensive left models using an analysis of deviance test [79]. We then included the results
of these two final internal models into the final external model, producing final comprehensive
left and final comprehensive right models. This merging of the external and internal models,
simply involves taking the significant factors from the right internal model and including these
in the external model to produce a final comprehensive right hemisphere model. Similarly, the
left hemisphere model involves taking the significant factors from the left internal model and
including these in the external model to produce a final comprehensive left hemisphere model.

For the left hemisphere ‘internal’ models, the globus pallidus and caudate nucleus were
returned as significant.When including the left globus pallidus and left caudate nucleus into
the external model to create the final comprehensive left hemisphere model, we followed Gra-
ham's [84] sequential regression method for dealing with the resulting collinearity (caudate
nucleus-globus pallidus: r = 0.881, P< 0.001). We removed this collinearity by using the resid-
uals of caudate nucleus regressed on globus pallidus values. We also included the potential for
interaction between brain regions in affectingASD rating.

For the right hemisphere ‘internal’ models, ridge analysis did not reveal any significant
brain structures, and thus the final comprehensive right hemisphere model collapsed to the
generic ‘external’ model.

As a complementary test to assess whether one side of the brain would better explain ASD
ratings, we fit separate linear models for each hemisphere (right and left) of each brain structure
on the log-transformedASD spectrumscores.We then directly compared the respective fits of
right and left hemispheres for each structure using separate Cox likelihood ratio tests (with the
lmtest package in R) for non-nestedmodel comparisons [85,86]. For each test, two comparisons
were made: one for the significant improvement of right-sidedmodels when left-sided data were
included, and the other for the improvement of left-sidedmodels when right-sided data were
included. Because the likelihood ratio tests were not independent (i.e. they tested the results of
models on structures that were themselves correlated), we controlled for the inflated false-dis-
covery rate by adjusting their resulting p values according to the Benjamini-Hochberg correction
for non-independent tests [87]. We then used these corrected p values in a Fisher's omnibus
meta-analysis [88] to determinewhich side of the brain overall better explains ASD ratings.

Results

Demographic and Cognitive Characteristics

The demographic characteristics of the cohort are shown in Table 1.

Mixed-effects models for ASD-like symptoms modelled against

subcortical volumes

The final external model of ASD ratings included the following effects: age, gender, diagnosis
and an age by diagnosis interaction. The ADHD group had higher overall ASD scores than did
the control group (t = 5.61, P< 0.001), but ASD scores of unaffected siblings and typically
developing controls did not differ (t = 1.68, P = 0.093) (Fig 1).

ASD ratings for the entire group showed an insignificant decline with age (t = 0.036, P = 0.971),
which was entirely due to the ADHD diagnosis group (Fig 2). Although the ADHD group dif-
fered (t = -2.51, P = 0.013) from the control group with respect to the effect of age, the unaffected
sibling and control groups did not differ with respect to the effect of age (t = -0.979, P = 0.328;
Fig 2). Finally, males had higher ASD ratings than did females (t = 2.09, P = 0.037; Fig 3).
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For the internal models of the effect of brain region on ASD rating, the final left-sided
model included the volumes of the caudate nucleus (scaled t = 2.83; P = 0.005) and the globus
pallidus (scaled t = 3.21, P = 0.001; Fig 4). No brain structures remained significant in the final
right-sided internal model. The final, comprehensive left-sidedmodel (Table 2) included sub-
ject age, gender, diagnosis, age by diagnosis interaction, caudate nucleus volume, globus palli-
dus volume and caudate nucleus by globus pallidus interaction.When plotted, the interaction
between caudate nucleus and globus pallidus described a situation where low ASD ratings were
accompanied by low caudate nucleus volume coupled with high globus pallidus volume,
whereas high ASD ratings were accompanied by high caudate nucleus volume coupled with
low globus pallidus volume (Fig 4). In comparing the final left- and right-sided comprehensive
models, the model including left brain structures explained the data significantly better than
did the external model (AIC left model = 1317.1 versus AIC right model = 1324.2, P = 0.006),
which was the same as the final right-sided comprehensive model (since none of the subcortical
structures was significantly related to the ASD score).

In addition to the left-sided final comprehensive model explaining the data better than the
right-sided final model, we investigated whether or not adding left structures to the final right
‘internal’ model improved the data fit, or vice-versa if adding right structures to the final left
‘internal’ model improved the data fit. Individual right-sidedmodels for the hippocampus,
amygdala and globus pallidus were significantly improved by including data from their left-
sided counterparts in the models (Fisher's omnibus meta-analysis; right-sidedmodel improved
by including left side: χ2 = 57.88, p< 0.001; left-sidedmodel improved by including right side:
χ2 = 9.33, p = 0.809) (Table 3). On the other hand, no left-sidedmodels were significantly
improved by including right-sided structures.

To test for an effect of laterality of brain region on ASD spectrum scores, we fit separate lin-
ear models for each structure and hemisphere on the log-transformedASD spectrum scores.
The respective fits of right and left hemispheres for each structure were then directly compared

Table 1. Demographic Table.

Con Unaffected

Sibling

ADHD

N 154 144 239

Mean SD Mean SD Mean SD F p US—Con ADHD—Con ADHD—US

Age 17.12 3.44 17.19 3.9 17.3 3.2 F(2,441) = 0.108 0.897 0.986 0.893 0.961

IQ 107.51 13.63 101.58 13.85 97.8 15.2 F(2,441) = 21.2 <0.0001 0.00122 <0.0001 0.0354

Social interest 0.91 1.72 1.88 3.33 4.5 4.5 F(2,441) = 54 <0.0001 0.0528 <0.0001 <0.0001

Social understanding 1.02 1.69 1.35 1.58 5.1 3.7 F(2,441) = 140 <0.0001 0.54 <0.0001 <0.0001

Stereotypy 0.3 0.75 0.33 0.95 2 2.5 F(2,441) = 59 <0.0001 0.984 <0.0001 <0.0001

Resistance 0.35 0.81 0.46 0.92 1.4 1.7 F(2,441) = 38.9 <0.0001 0.765 <0.0001 <0.0001

ASD total 2.58 3.7 4.03 4.82 13.1 9.5 F(2,441) = 129 <0.0001 0.181 <0.0001 <0.0001

ADHD total 0.45 0.98 0.75 1.42 13.5 2.9 F(2,441) = 2420 <0.0001 0.442 <0.0001 <0.0001

Gender 92/62 87/57 75/164 <0.0001

Values are mean ± standard deviation. Significance was set at p < 0.05. All p values refer to ANOVAs, except for gender where the p value refers to a chi-

square test. Where ANOVA’s returned a significant result, post-hoc Tukey Honest Significant Difference (Tukey HSD) tests were performed. US—Con,

refers to a pairwise comparison between unaffected siblings and controls. ADHD-Con, refers to a a pairwise comparison between ADHD and controls.

ADHD—US, refers to a pairwise comparison between ADHD and unaffected siblings. Four subscales of the Children’s Social and Behavioural

Questionnaire (CSBQ) which probe ASD spectrum symptoms are shown in this table: Social Interest, Social Understanding (Understanding), Stereotypy

and Resistance. ASD-total is calculated as a sum of these four subscales. ADHD-total scores are calculated according to the algorithm described in detail in

S1 Text. For gender, females are noted first, with the format female number / male number.

doi:10.1371/journal.pone.0165620.t001
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using separate likelihood ratio tests for non-nestedmodel comparisons using the lmtest pack-
age in R. For each test, two comparisons are made: one for the significant improvement of
right-sidedmodels when left-sided data are included, and the other for the improvement of
left-sidedmodels when right-sided data are included. Because the likelihood ratio tests were
not independent (i.e. they tested the results of models on structures that were themselves corre-
lated), we controlled for the inflated false-discovery rate by adjusting their resulting p-values
according to Benjamini and Hochberg's approach for non-independent tests (SeeMethods for
detailed description).

Discussion

The primary finding from the current study is that an interaction between left caudate nucleus
and left globus pallidus was predictive of ASD-like symptoms as measured by the CSBQ. High
ASD ratings were accompanied by an increase in left caudate nucleus volume coupled with
decreased left globus pallidus volume, whereas low ASD ratings were accompanied by lower
left caudate nucleus volume coupled with increased left globus pallidus volume. ASD-like
symptoms were also found to be significantly elevated in participants with ADHD relative to

Fig 1. ASD-like symptoms in healthy controls, unaffected siblings and ADHD. Participants with ADHD were

found to have significantly higher scores relative to both unaffected siblings and healthy controls. *** p<0.001, with

post-hoc Tukey test, following an ANOVA. ASD symptom score refers to an aggregate score from the four Children’s

Social and Behavioural Questionnaire (CSBQ) subscales, (1) Social interest, (2) Social understanding, (3) Stereotypy

and (4) Resistance. Abbreviations: con, control; unaf sib, unaffected siblings, adhd, Attention-Deficit/Hyperactivity

Disorder.

doi:10.1371/journal.pone.0165620.g001
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both unaffected siblings and controls. This agrees with previous studies that have found ele-
vated levels of ASD symptoms in participants with ADHD [7,61,80,81]. Overall, left hemi-
sphere data was found to provide a much better fit of data, which is consistent with work that
has found that the left hemisphere is more abnormal in ASD [39,40].

The results indicate that the caudate nucleus and the interaction between the caudate
nucleus and the globus pallidus can predict part of the variance in ASD ratings in participants
with ADHD as well as in unaffected siblings and controls. Frontostriatal circuits have been
implicated in many functions relating to reward and motivation as well as psychiatric disorders
including ADHD and ASD [47]. Within the striatum itself, the caudate nucleus guides the
selection of goals based on the evaluation of action outcomes, while the dorsal striatum updates
the reward value of chosen actions which in turn influences future behaviour [89]. Aberrant
development of caudate nucleus and globus pallidus may lead to diminishedmotivation to
attend to social stimuli, such as facial expressions and voices. Indeed, a recent study found a
striking pattern of under-connectivity in resting state functionalMRI data between left

Fig 2. ASD scores decrease significantly with age. Only the regression line for ADHD participants returned a significant

Pearson’s product-moment correlation with p<0.05. ASD score refers to an aggregate score from the four Children’s Social

and Behavioural Questionnaire (CSBQ) subscales, (1) Social interest, (2) Social understanding, (3) Stereotypy and (4)

Resistance. Abbreviations: con, control; unaf sib, unaffected siblings, ADHD, Attention-Deficit/Hyperactivity Disorder;

ASD, Autism Spectrum Disorder.

doi:10.1371/journal.pone.0165620.g002
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hemisphere voice-selective posterior superior temporal sulcus (pSTS) and distributed nodes of
the reward pathway in autism [15]. Therefore attending to voices may not be inherently
rewarding for those with ASD [90]. The interaction between globus pallidus and caudate
nucleus may be related to a bottleneck of information flow between the caudate as input areas
of the striatum and globus pallidus as output area [47]. It is possible that dysfunction, originat-
ing in the caudate, leads to a compensatory offset in the globus pallidus. However, the reverse
scenario is also possible, with dysfunction in the globus pallidus causing a compensatory offset
in the caudate nucleus. Further analysis, particularly with tractography would be needed to
examine this hypothesis. Feasibility of detailed tractography within the striatum has recently
been demonstrated [91,92]. It should be borne in mind that our finding is specific for autism-
like symptoms as the volumes of the caudate and globus pallidus did not correlate with ADHD
symptoms.

The caudate nucleus is also integral to executive function, and has been implicated in the
development of stereotyped and repetitive behaviours [93]. A number of studies have found
increases in caudate volume in ASD [17,30,32–34].Moreover, the striatum has been implicated
in repetitive behavior across neuropsychiatric disorders, from Tourette’s disorder to obsessive-
compulsive disorder [30,32,33,46,94–96].

Fig 3. ASD scores significantly increased in males. ASD score refers to an aggregate score from the four Children’s

Social and Behavioural Questionnaire (CSBQ) subscales, (1) Social interest, (2) Social understanding, (3) Stereotypy

and (4) Resistance. Abbreviations: con, control; unaf sib, unaffected siblings, ADHD, Attention-Deficit/Hyperactivity

Disorder; ASD, Autism Spectrum Disorder.

doi:10.1371/journal.pone.0165620.g003
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Studies using a dimensional assessment of ASD symptoms, when investigating the relation-
ship between caudate volume and ASD, have produced equivocal results. For instance, the cur-
rent scientific literature shows no clear direction in the relationship between repetitive
behavior and caudate volume in ASD. One of the largest studies to date (with 99 ASD partici-
pants and 89 TD participants) [46] noted a negative correlation between caudate volume and
high-order repetitive behaviour. This study also found a larger caudate volume in ASD com-
pared to controls. This counter-intuitive result may reflect a compensatorymechanism, with a
larger caudate volume enabling a degree of adaptation that counters stereotyped behaviours.

Contrary to the above finding, a study with a small number of subjects (n = 12) found a pos-
itive correlation between high-order repetitive behaviour and caudate volume [32]. Further
complicating a clear interpretation, a study measuring a combination of high and low-order
repetitive behaviour also found a positive correlation between this measure and caudate vol-
ume [33]. Despite these discrepancies, altogether these results indicate that the caudate has a
significant role in predictingmore severe repetitive behaviours [32,33,46].We should also
point out that inconsistent findings in previous volumetric studies of ADHD and ASD may be
related to issues of comorbidity that have generally been ignored to date.

The fact that only the left caudate predicts ASD-like symptoms is suggestive of a lateralized
dysfunction in ASD, something that has been reported previously [97]. In addition, data from
the left hemisphere significantly improved the fit of right hemisphere models, which is

Fig 4. ASD scores are predicted by an interaction between left caudate nucleus volume and left

globus pallidus volume. Confidence intervals of 75% are shown for both structures. ASD symptom score

refers to an aggregate score from the four Children’s Social and Behavioural Questionnaire (CSBQ)

subscales, (1) Social interest, (2) Social understanding, (3) Stereotypy and (4) Resistance. Abbreviations:

con, control; unaf sib, unaffected siblings, adhd, Attention-Deficit/Hyperactivity Disorder; ASD, Autism

Spectrum Disorder.

doi:10.1371/journal.pone.0165620.g004
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consistent with previous work that has found that the left hemisphere is more abnormal in
ASD [39,40].

In our statistical model, the globus pallidus was not a significant factor by itself, which is
largely consistent with previous studies [98,99]. The interaction between caudate nucleus and
globus pallidus is particularly interesting as the caudate nucleus functions as an input area for
the striatum while the globus pallidus functions as an output area. All parts of the cerebral cor-
tex give rise to efferent fibers to the caudate. As an outflow of the striatum, the globus pallidus
projects to the ventral nuclei of the thalamus. The interaction between the caudate nucleus and
globus pallidus suggests that the inflow and outflow of the striatum is disturbed in autism.

The absence of a significant interaction between structural volume and diagnosis indicates
that the caudate and globus pallidus volumes predict ASD ratings equally for typically develop-
ing controls and unaffected siblings as for ADHD participants. This was contrary to our expec-
tation and leads to the conclusion that dysfunction in the anatomy of the striatummay
influence the degree of ASD-like symptoms independent of clinical ADHD or ASD pathology.

Table 2. Final, left-sided comprehensive generalised linear mixed-effect model for ASD.

Effect t P

Age -0.404 0.687

Gender 2.75 0.006

Diagnosis (unaffected sibling vs. control) 1.34 0.180

Diagnosis (ADHD vs. control) 5.06 <0.001

Left caudate nucleus (residuals) -2.13 0.034

Left globus pallidus (residuals) -1.45 0.147

Age:diagnosis (unaffected sibling vs. control) -0.704 0.482

Age:diagnosis (ADHD vs. control) -2.09 0.037

Caudate nucleus (residuals):Globus pallidus (residuals) -1.76 0.079*

Caudate nucleus and globus pallidus values are regression residuals (see results section).

* Although the caudate nucleus:globus pallidus interaction was only marginally significant, removing this

interaction significantly reduced the model fit (P = 0.034). A general mixed-effect model is run using

normalised volumes of the left nucleus accumbens, age, diagnosis and gender as explanatory variables

together with family and total ADHD symptoms as random effects. The log-transformed ASD score is set as

the response variable. The final model is derived in an iterative model selection procedure by removing

insignificant effects in a stepwise manner, and checking for model fit using analysis of deviance tests on

nested models. (See Methods for detailed description of model selection procedure). ASD score refers to an

aggregate score from the four Children’s Social and Behavioural Questionnaire (CSBQ) subscales, (1)

Social interest, (2) Social understanding, (3) Stereotypy and (4) Resistance. Abbreviations: df, degrees of

freedom

doi:10.1371/journal.pone.0165620.t002

Table 3. The effect of laterality on ASD spectrum scores.

Structure Right-sided improved by left Left-sided improved by right

z padj z padj

Nucleus Accumbens -0.351 0.764 -1.41 0.556

Hippocampus -9.06 <0.001 0.564 0.573

Amygdala -13.04 <0.001 0.647 0.573

Putamen -0.943 0.605 0.584 0.573

Caudate Nucleus 0.300 0.764 -0.651 0.573

Globus Pallidus -7.34 <0.001 2.06 0.275

Striatum 0.519 0.764 -0.726 0.573

doi:10.1371/journal.pone.0165620.t003
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The hypothesis that these structures would be significant in our models in controls and
unaffected siblings, as well as in patients with ADHD, stems from the fact that elevated levels
of ASD at a subclinical level have been reported extensively (2,5–7,48), while subclinical levels
of ASD have also been shown to be continuously distributed in the general population [2,8,9].

The higher ASD ratings noted in male subjects are consistent with previous studies [100],
and also reflect the fact that the male:female ratio for clinical ASD can be as high as 4 to 1
[101]. ADHD itself is also more prevalent in males [102]. The current results indicate that
ASD-like symptoms are raised in males regardless of diagnosis, with no gender by diagnosis
interaction. This ties in with the absence of a structure by diagnosis interactionmentioned pre-
viously, suggesting that the current profile of raised ASD ratings in males, in conjunction with
raised caudate nucleus volume and lower globus pallidus volume, is applicable to the popula-
tion as a whole and not only to those with a diagnosis of ADHD.

There was a significant age-related decrease in ASD-like symptoms in the participants with
ADHD, which is consistent with previous cross-sectional and longitudinal studies finding age-
related improvements in ASD [103,104] [105]. Normal development is associated with marked
changes in myelination inWM tracts, with myelination increasing throughout childhood and
adolescence [106]. Increasing myelination of frontostriatal connections during adolescence
and early adulthoodmay facilitate top-down improvements in executive control [107]. These
improvements may be related to cognitive and behavioural changes, including social adapta-
tion, use of cognitive therapy or pharmaceutical treatment in ADHD participants over the
course of adolescence.

The current study should be viewed in the context of some strengths and limitations. Clear
strengths of the work are the large sample size, the inclusion of unaffected siblings of ADHD
participants, as well as the use of the CSBQ to probe subclinical ASD symptoms in ADHD par-
ticipants–an area of study that has been significantly neglected. Limitations include the cross-
sectional design of the study. Future longitudinal studies of MRI-measured developmental tra-
jectories are needed for assessing the impact of age on developing brain structures.

Overall, the current results highlight a specific volumetric profile that is associated with sub-
clinical ASD symptoms in participants with ADHD, unaffected siblings and controls. The
results point to the caudate nucleus and globus pallidus volumes as being of critical importance
in predicting the level of ASD-like symptoms of participants with ADHD indicating that an
interaction between these two structures was a significant predictor of ASD scores.
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