505 research outputs found

    Magnetic properties of HO2 thin films

    Full text link
    We report on the magnetic and transport studies of hafnium oxide thin films grown by pulsed-laser deposition on sapphire substrates under different oxygen pressures, ranging from 10-7 to 10-1 mbar. Some physical properties of these thin films appear to depend on the oxygen pressure during growth: the film grown at low oxygen pressure (P ~= 10-7 mbar) has a metallic aspect and is conducting, with a positive Hall signal, while those grown under higher oxygen pressures (7 x 10-5 <= P <= 0.4 mbar) are insulating. However, no intrinsic ferromagnetic signal could be attributed to the HfO2 films, irrespective of the oxygen pressure during the deposition.Comment: 1

    Assessing the accuracy of energy turbulent diffusion dispersion correlation in a porous two-fluid model dedicated to PWR core simulations

    Get PDF
    International audienceCATHARE is a 2-fluid thermal-hydraulic code, capable of simulating thermal and mechanical phenomena occurring in the primary and secondary circuits of Pressurized Water Reactor under a wide variety of accidental situations. One of the medium-term objectives of system code CATHARE-3 is modeling a PWR core at assembly scale to simulate various accidental situations such as the loss of coolant accident (LOCA) and steam line break accident. This requires the monophasic and two-phase models that adapted to the assembly scale. However, there exists 3D models for the whole core and sub-channel scale models, which have a certain degree of validation. For more macroscopic three-dimensional models, we only have global validations without local measurements, which is necessary for the validations of each closure law's separate effects. The objective of my PhD project is improving the sub-channel scale models and developing the assembly scale models in CATHARE-3 system code with the sub-channel scale simulations and experiments results

    Ferromagnetism in the Strong Hybridization Regime of the Periodic Anderson Model

    Full text link
    We determine exactly the ground state of the one-dimensional periodic Anderson model (PAM) in the strong hybridization regime. In this regime, the low energy sector of the PAM maps into an effective Hamiltonian that has a ferromagnetic ground state for any electron density between half and three quarters filling. This rigorous result proves the existence of a new magnetic state that was excluded in the previous analysis of the mixed valence systems.Comment: Accepted in Phys. Rev.

    Spectrally-resolved UV photodesorption of CH4 in pure and layered ices

    Full text link
    Context. Methane is among the main components of the ice mantles of insterstellar dust grains, where it is at the start of a rich solid-phase chemical network. Quantification of the photon-induced desorption yield of these frozen molecules and understanding of the underlying processes is necessary to accurately model the observations and the chemical evolution of various regions of the interstellar medium. Aims. This study aims at experimentally determining absolute photodesorption yields for the CH4 molecule as a function of photon energy. The influence of the ice composition is also investigated. By studying the methane desorption from layered CH4:CO ice, indirect desorption processes triggered by the excitation of the CO molecules is monitored and quantified. Methods. Tunable monochromatic VUV light from the DESIRS beamline of the SOLEIL synchrotron is used in the 7 - 13.6 eV (177 - 91 nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice samples. The release of species in the gas phase is monitored by quadrupole mass spectrometry and absolute photodesorption yields of intact CH4 are deduced. Results. CH4 photodesorbs for photon energies higher than ~9.1 eV (~136 nm). The photodesorption spectrum follows the absorption spectrum of CH4, which confirms a desorption mechanism mediated by electronic transitions in the ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a pattern characteristic of CO absorption, indicating desorption induced by energy transfer from CO molecules. Conclusions. The photodesorption of CH4 from the pure ice in various interstellar environments is around 2.0 x 10^-3 molecules per incident photon. Results on CO-induced indirect desorption of CH4 provide useful insights for the generalization of this process to other molecules co-existing with CO in ice mantles

    X-ray photodesorption of complex organic molecules in protoplanetary disks -- I. Acetonitrile CH3CN

    Full text link
    X-rays emitted from pre-main-sequence stars at the center of protoplanetary disks can induce nonthermal desorption from interstellar ices populating the cold regions. This X-ray photodesorption needs to be quantified for complex organic molecules (COMs), including acetonitrile CH3CN, which has been detected in several disks. We experimentally estimate the X-ray photodesorption yields of neutral species from pure CH3CN ices and from interstellar ice analogs for which CH3CN is mixed either in a CO- or H2O-dominated ice. The ices were irradiated at 15 K by soft X-rays (400-600 eV) from synchrotron light (SOLEIL synchrotron). X-ray photodesorption was probed in the gas phase via quadrupole mass spectrometry. X-ray photodesorption yields were derived from the mass signals and were extrapolated to higher X-ray energies for astrochemical models. X-ray photodesorption of the intact CH3CN is detected from pure CH3CN ices and from mixed 13CO:CH3CN ices, with a yield of about 5x10^(-4) molecules/photon at 560 eV. When mixed in H2O-dominated ices, X-ray photodesorption of the intact CH3CN at 560 eV is below its detection limit, which is 10^(-4) molecules/photon. Yields associated with the desorption of HCN, CH4 , and CH3 are also provided. The derived astrophysical yields significantly depend on the local conditions expected in protoplanetary disks. They vary from 10^(-4) to 10(-6) molecules/photon for the X-ray photodesorption of intact CH3CN from CO-dominated ices. Only upper limits varying from 5x10^(-5) to 5x10^(-7) molecules/photon could be derived for the X-ray photodesorption of intact CH3CN from H2O-dominated ices. X-ray photodesorption of intact CH3CN from interstellar ices might in part explain the abundances of CH3CN observed in protoplanetary disks. The desorption efficiency is expected to vary with the local physical conditions, hence with the disk region

    Wavelength-Dependent UV Photodesorption of Pure N2N_2 and O2O_2 Ices

    Get PDF
    Context: Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high. Aims: N2N_2 and O2O_2 are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption. Methods: Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure N2N_2 and O2O_2 thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic N2N_2 and O2O_2 isotopolog mixtures are used to investigate the importance of dissociation upon irradiation. Results: N2N_2 photodesorption mainly occurs through excitation of the b1⊓ub^1\sqcap_u state and subsequent desorption of surface molecules. The observed vibronic structure in the N2N_2 photodesorption spectrum, together with the absence of N3N_3 formation, supports that the photodesorption mechanism of N2N_2 is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, O2O_2 photodesorption in the 7−13.6 eV range occurs through dissociation and presents no vibrational structure. Conclusions: Photodesorption rates of N2N_2 and O2O_2 integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between 10−310^{-3} and 10−210^{-2} photodesorbed molecules per incoming photon.Astronom

    Critical flow prediction by system codes – Recent analyses made within the FONESYS network

    Get PDF
    A benchmark activity on Two-Phase Critical Flow (TPCF) prediction was conducted in the framework of the Forum &amp; Network of System Thermal-Hydraulics Nuclear Reactor Thermal-Hydraulics (FONESYS). FONESYS is a network among code developers who share the common objective to strengthen current technology. The aim of the FONESYS Network is to highlight the capabilities and the robustness as well as the limitations of current SYSTH codes to predict the main phenomena during transient scenarios in nuclear reactors for safety issues. Six separate effect test facilities, more than 90 tests, both in steady and transient conditions, were considered for the activity. Moreover, two ideal tests were designed for code to code comparison in clearly defined conditions. Overall eight System Thermal-Hydraulic (SYS-TH) codes were adopted, mostly by the developers themselves, ensuring the minimization of the user effect. Results from selected tests were also compared against Delayed Equilibrium Model, not yet implemented in industrial version of SYS-TH codes. Generally, the results of the benchmark show an improvement of the capability of SYS-TH codes to predict TPCF in the last three decades. However, predicting break flowrate remains a major source of uncertainty in accidental transient simulations of Water-Cooled Nuclear Reactors (WCNR). A set of possible actions is proposed to go beyond the current limitations of choked flow models. More detailed guidelines for using 0-D choked flow models is possible by using the experience gained by the benchmark results as well as all available validation results. Progress in understanding and 1-D modelling of flashing and choked flow might be achieved by a deeper physical analysis leading to more mechanistic models based on specific flow regime maps for high speed flow. Also the use of advanced 3-D numerical tools may help to understand and predict the complex 3-D geometrical effect

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range
    • 

    corecore