33 research outputs found

    Analyses of Charophyte Chloroplast Genomes Help Characterize the Ancestral Chloroplast Genome of Land Plants

    Get PDF
    The file attached is the published version of the article. Revised LorP 22/5/2017©The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]

    Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces

    Get PDF
    Background: Understanding the evolution of cultivated barley is important for two reasons. First, the evolutionary relationships between different landraces might provide information on the spread and subsequent development of barley cultivation, including the adaptation of the crop to new environments and its response to human selection. Second, evolutionary information would enable landraces with similar traits but different genetic backgrounds to be identified, providing alternative strategies for the introduction of these traits into modern germplasm. Results: The evolutionary relationships between 651 barley landraces were inferred from the genotypes for 24 microsatellites. The landraces could be divided into nine populations, each with a different geographical distribution. Comparisons with ear row number, caryopsis structure, seasonal growth habit and flowering time revealed a degree of association between population structure and phenotype, and analysis of climate variables indicated that the landraces are adapted, at least to some extent, to their environment. Human selection and/or environmental adaptation may therefore have played a role in the origin and/or maintenance of one or more of the barley landrace populations. There was also evidence that at least some of the population structure derived from geographical partitioning set up during the initial spread of barley cultivation into Europe, or reflected the later introduction of novel varieties. In particular, three closely-related populations were made up almost entirely of plants with the daylength nonresponsive version of the photoperiod response gene PPD-H1, conferring adaptation to the long annual growth season of northern Europe. These three populations probably originated in the eastern Fertile Crescent and entered Europe after the initial spread of agriculture. Conclusions: The discovery of population structure, combined with knowledge of associated phenotypes and environmental adaptations, enables a rational approach to identification of landraces that might be used as sources of germplasm for breeding programs. The population structure also enables hypotheses concerning the prehistoric spread and development of agriculture to be addressed

    Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the fertile crescent

    Get PDF
    We used supernetworks with datasets of nuclear gene sequences and novel markers detecting retrotransposon insertions in ribosomal DNA loci to reassess the evolutionary relationships among tetraploid wheats. We show that domesticated emmer has a reticulated genetic ancestry, sharing phylogenetic signals with wild populations from all parts of the wild range. The extent of the genetic reticulation cannot be explained by post-domestication gene flow between cultivated emmer and wild plants, and the phylogenetic relationships among tetraploid wheats are incompatible with simple linear descent of the domesticates from a single wild population. A more parsimonious explanation of the data is that domesticated emmer originates from a hybridized population of different wild lineages. The observed diversity and reticulation patterns indicate that wild emmer evolved in the southern Levant, and that the wild emmer populations in south-eastern Turkey and the Zagros Mountains are relatively recent reticulate descendants of a subset of the Levantine wild populations. Based on our results we propose a new model for the emergence of domesticated emmer. During a pre-domestication period, diverse wild populations were collected from a large area west of the Euphrates and cultivated in mixed stands. Within these cultivated stands, hybridization gave rise to lineages displaying reticulated genealogical relationships with their ancestral populations. Gradual movement of early farmers out of the Levant introduced the pre-domesticated reticulated lineages to the northern and eastern parts of the Fertile Crescent, giving rise to the local wild populations but also facilitating fixation of domestication traits. Our model is consistent with the protracted and dispersed transition to agriculture indicated by the archaeobotanical evidence, and also with previous genetic data affiliating domesticated emmer with the wild populations in southeast Turkey. Unlike other protracted models, we assume that humans played an intuitive role throughout the process.Natural Environment Research Council [NE/E015948/1]; Slovak Research and Development Agency [APVV-0661-10, APVV-0197-10]info:eu-repo/semantics/publishedVersio

    C. elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a Gypsy/Ty3-Related Retrotransposon

    Get PDF
    Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology

    A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history

    Get PDF
    Tetraploid emmer wheat (Triticum turgidum ssp. dicoccon) is a progenitor of the world’s most widely grown crop, hexaploid bread wheat (Triticum aestivum), as well as the direct ancestor of tetraploid durum wheat (T. turgidum subsp. turgidum). Emmer was one of the first cereals to be domesticated in the old world; it was cultivated from around 9700 BC in the Levant1,2 and subsequently in south-western Asia, northern Africa and Europe with the spread of Neolithic agriculture3,4. Here, we report a whole-genome sequence from a museum specimen of Egyptian emmer wheat chaff, 14C dated to the New Kingdom, 1130–1000 BC. Its genome shares haplotypes with modern domesticated emmer at loci that are associated with shattering, seed size and germination, as well as within other putative domestication loci, suggesting that these traits share a common origin before the introduction of emmer to Egypt. Its genome is otherwise unusual, carrying haplotypes that are absent from modern emmer. Genetic similarity with modern Arabian and Indian emmer landraces connects ancient Egyptian emmer with early south-eastern dispersals, whereas inferred gene flow with wild emmer from the Southern Levant signals a later connection. Our results show the importance of museum collections as sources of genetic data to uncover the history and diversity of ancient cereals

    Meeting the challenges facing wheat production: The strategic research agenda of the Global Wheat Initiative

    Get PDF
    Wheat occupies a special role in global food security since, in addition to providing 20% of our carbohydrates and protein, almost 25% of the global production is traded internationally. The importance of wheat for food security was recognised by the Chief Agricultural Scientists of the G20 group of countries when they endorsed the establishment of the Wheat Initiative in 2011. The Wheat Initiative was tasked with supporting the wheat research community by facilitating collaboration, information and resource sharing and helping to build the capacity to address challenges facing production in an increasingly variable environment. Many countries invest in wheat research. Innovations in wheat breeding and agronomy have delivered enormous gains over the past few decades, with the average global yield increasing from just over 1 tonne per hectare in the early 1960s to around 3.5 tonnes in the past decade. These gains are threatened by climate change, the rapidly rising financial and environmental costs of fertilizer, and pesticides, combined with declines in water availability for irrigation in many regions. The international wheat research community has worked to identify major opportunities to help ensure that global wheat production can meet demand. The outcomes of these discussions are presented in this paper
    corecore