167 research outputs found

    Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases.

    Get PDF
    A recent meeting was held on March 22, 2019, among the FDA, clinical scientists, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocacy groups to discuss challenges and potential solutions for increasing development of therapeutics for central nervous system metastases. A key issue identified at this meeting was the need for consistent tumor measurement for reliable tumor response assessment, including the first step of standardized image acquisition with an MRI protocol that could be implemented in multicenter studies aimed at testing new therapeutics. This document builds upon previous consensus recommendations for a standardized brain tumor imaging protocol (BTIP) in high-grade gliomas and defines a protocol for brain metastases (BTIP-BM) that addresses unique challenges associated with assessment of CNS metastases. The "minimum standard" recommended pulse sequences include: (i) parameter matched pre- and post-contrast inversion recovery (IR)-prepared, isotropic 3D T1-weighted gradient echo (IR-GRE); (ii) axial 2D T2-weighted turbo spin echo acquired after injection of gadolinium-based contrast agent and before post-contrast 3D T1-weighted images; (iii) axial 2D or 3D T2-weighted fluid attenuated inversion recovery; (iv) axial 2D, 3-directional diffusion-weighted images; and (v) post-contrast 2D T1-weighted spin echo images for increased lesion conspicuity. Recommended sequence parameters are provided for both 1.5T and 3T MR systems. An "ideal" protocol is also provided, which replaces IR-GRE with 3D TSE T1-weighted imaging pre- and post-gadolinium, and is best performed at 3T, for which dynamic susceptibility contrast perfusion is included. Recommended perfusion parameters are given

    Solitary osteochondroma of the twelfth rib with intraspinal extension and cord compression in a middle-aged patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteochondroma is a disease of growing bone and thus typically presents in younger patients. It has rarely been described in middle-aged and elderly patients. Data on the occurrence of osteochondroma show that the reported incidence of costal osteochondroma is very low. Moreover, costal osteochondroma arising at the costovertebral junction with neural foraminal extension and spinal cord compression is extremely rare.</p> <p>Case presentation</p> <p>This study reports the case of a 58-year-old patient with a solitary osteochondroma of the 12th rib with intraspinal extension and spinal cord compression. The clinical history, plain radiographs, computed tomography (CT), magnetic resonance imaging, and pathologic findings of the reported patient have been reviewed. The relevant medical literature has also been reviewed. The patient was treated with surgery for complete tumour excision to avoid tumour recurrence. After surgery, the patient's symptoms improved. An additional CT scan obtained at 1 year after surgery did not show any evidence of recurrence.</p> <p>Conclusions</p> <p>This patient is the oldest patient reported to have this rare form of costal osteochondroma. The age of the patient and the erosion of the adjacent bones raised clinical suspicion of malignancy; therefore, surgical management involved complete tumour excision with thoracolumbar fixation and fusion.</p

    Sporadic hemangioblastomas are characterized by cryptic VHL inactivation

    Get PDF
    Abstract Hemangioblastomas consist of 10-20% neoplastic “stromal” cells within a vascular tumor cell mass of reactive pericytes, endothelium and lymphocytes. Familial cases of central nervous system hemangioblastoma uniformly result from mutations in the Von Hippel-Lindau (VHL) gene. In contrast, inactivation of VHL has been previously observed in only a minority of sporadic hemangioblastomas, suggesting an alternative genetic etiology. We performed deep-coverage DNA sequencing on 32 sporadic hemangioblastomas (whole exome discovery cohort n = 10, validation n = 22), followed by analysis of clonality, copy number alteration, and somatic mutation. We identified somatic mutation, loss of heterozygosity and/or deletion of VHL in 8 of 10 discovery cohort tumors. VHL inactivating events were ultimately detected in 78% (25/32) of cases. No other gene was significantly mutated. Overall, deep-coverage sequence analysis techniques uncovered VHL alterations within the neoplastic fraction of these tumors at higher frequencies than previously reported. Our findings support the central role of VHL inactivation in the molecular pathogenesis of both familial and sporadic hemangioblastomas.http://deepblue.lib.umich.edu/bitstream/2027.42/110224/1/40478_2014_Article_167.pd

    Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations.

    Get PDF
    Several studies using genome-wide molecular techniques have reported various degrees of genetic heterogeneity between primary tumours and their distant metastases. However, it has been difficult to discern patterns of dissemination owing to the limited number of patients and available metastases. Here, we use phylogenetic techniques on data generated using whole-exome sequencing and copy number profiling of primary and multiple-matched metastatic tumours from ten autopsied patients to infer the evolutionary history of breast cancer progression. We observed two modes of disease progression. In some patients, all distant metastases cluster on a branch separate from their primary lesion. Clonal frequency analyses of somatic mutations show that the metastases have a monoclonal origin and descend from a common 'metastatic precursor'. Alternatively, multiple metastatic lesions are seeded from different clones present within the primary tumour. We further show that a metastasis can be horizontally cross-seeded. These findings provide insights into breast cancer dissemination

    Longitudinal Molecular Trajectories of Diffuse Glioma in Adults

    Get PDF
    The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear ÂčÂČ . Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of difuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specifc gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at diferent rates across the glioma subtypes, and hypermutation was not associated with diferences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore