200 research outputs found

    Inertial effects in three dimensional spinodal decomposition of a symmetric binary fluid mixture: A lattice Boltzmann study

    Get PDF
    The late-stage demixing following spinodal decomposition of a three-dimensional symmetric binary fluid mixture is studied numerically, using a thermodynamicaly consistent lattice Boltzmann method. We combine results from simulations with different numerical parameters to obtain an unprecendented range of length and time scales when expressed in reduced physical units. Using eight large (256^3) runs, the resulting composite graph of reduced domain size l against reduced time t covers 1 < l < 10^5, 10 < t < 10^8. Our data is consistent with the dynamical scaling hypothesis, that l(t) is a universal scaling curve. We give the first detailed statistical analysis of fluid motion, rather than just domain evolution, in simulations of this kind, and introduce scaling plots for several quantities derived from the fluid velocity and velocity gradient fields.Comment: 49 pages, latex, J. Fluid Mech. style, 48 embedded eps figs plus 6 colour jpegs for Fig 10 on p.2

    Entropy-induced smectic phases in rod-coil copolymers

    Full text link
    We present a self-consistent field theory (SCFT) of semiflexible (wormlike) diblock copolymers, each consisting of a rigid and a flexible part. The segments of the polymers are otherwise identical, in particular with regard to their interactions, which are taken to be of an Onsager excluded-volume type. The theory is developed in a general three-dimensional form, as well as in a simpler one-dimensional version. Using the latter, we demonstrate that the theory predicts the formation of a partial-bilayer smectic-A phase in this system, as shown by profiles of the local density and orientational distribution functions. The phase diagram of the system, which includes the isotropic and nematic phases, is obtained in terms of the mean density and rigid-rod fraction of each molecule. The nematic-smectic transition is found to be second order. Since the smectic phase is induced solely by the difference in the rigidities, the onset of smectic ordering is shown to be an entropic effect and therefore does not have to rely on additional Flory-Huggins-type repulsive interactions between unlike chain segments. These findings are compared with other recent SCFT studies of similar copolymer models and with computer simulations of several molecular models.Comment: 13 pages, 8 figure

    Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

    Full text link
    We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.Comment: 7 pages, 7 figure

    Reducing publication delay to improve the efficiency and impact of conservation science.

    Get PDF
    Evidence-based decision-making is most effective with comprehensive access to scientific studies. If studies face significant publication delays or barriers, the useful information they contain may not reach decision-makers in a timely manner. This represents a potential problem for mission-oriented disciplines where access to the latest data is required to ensure effective actions are undertaken. We sought to analyse the severity of publication delay in conservation science-a field that requires urgent action to prevent the loss of biodiversity. We used the Conservation Evidence database to assess the length of publication delay (time from finishing data collection to publication) in the literature that tests the effectiveness of conservation interventions. From 7,447 peer-reviewed and non-peer-reviewed studies of conservation interventions published over eleven decades, we find that the raw mean publication delay was 3.2 years (±2SD = 0.1) and varied by conservation subject. A significantly shorter delay was observed for studies focused on Bee Conservation, Sustainable Aquaculture, Management of Captive Animals, Amphibian Conservation, and Control of Freshwater Invasive Species (Estimated Marginal Mean range from 1.4-1.9 years). Publication delay was significantly shorter for the non-peer-reviewed literature (Estimated Marginal Mean delay of 1.9 years ± 0.2) compared to the peer-reviewed literature (i.e., scientific journals; Estimated Marginal Mean delay of 3.0 years ± 0.1). We found publication delay has significantly increased over time (an increase of ~1.2 years from 1912 (1.4 years ± 0.2) to 2020 (2.6 years ± 0.1)), but this change was much weaker and non-significant post-2000s; we found no evidence for any decline. There was also no evidence that studies on more threatened species were subject to a shorter delay-indeed, the contrary was true for mammals, and to a lesser extent for birds. We suggest a range of possible ways in which scientists, funders, publishers, and practitioners can work together to reduce delays at each stage of the publication process

    Consistent oviposition preferences of the Duke of Burgundy butterfly over 14 years on a chalk grassland reserve in Bedfordshire, UK

    Get PDF
    Funder: Christ's College, University of Cambridge (GB)Funder: Isaac Newton Trust; doi: http://dx.doi.org/10.13039/501100004815Funder: Museums Association and EsmĂ©e Fairbairn Collections Fund (GB)Abstract: The Duke of Burgundy butterfly (Hamearis lucina) is known to have specific habitat requirements for its larval foodplants. However, no studies have yet investigated whether these preferences vary over time or in relation to climate, and there is a paucity of data on whether management on reserves can replicate preferred conditions. Here, we build upon existing research to confirm which characteristics Duke of Burgundy prefer for their larval foodplants, whether preferences remain consistent across years, and whether conservation management on reserves can replicate these conditions. Fieldwork was carried out at Totternhoe Quarry Reserve, a chalk grassland site in Bedfordshire, UK. Confirming previous research, we found that large Primula plants in dense patches were chosen for oviposition, but that once chosen there was no preference to lay eggs on a plant’s largest leaf. Chosen foodplants were also more sheltered and in closer proximity to scrub than their controls. However, at a finer scale, we found little evidence for any preference based on differences in microclimate, or vegetation height immediately surrounding the plants. This suggests features that alter microclimatic conditions at a larger scale are relatively more important for determining the suitability of oviposition sites. Nearly all preferences remained consistent over time and did not vary between years. Management of scrub on the reserve was able to reproduce some preferred habitat features (high plant density), but not others (large plant size). Implications for insect conservation: The consistency of findings across years, despite inter-annual variation in temperature, rainfall and number of adults, indicates that the Duke of Burgundy is conservative in its foodplant choice, highlighting its need for specific habitat management. Targeted management for foodplants could form part of a tractable set of tools to support Duke of Burgundy numbers on reserves, but a careful balance is needed to avoid scrub clearance leaving plants in sub-optimal conditions

    Scientists' warning on extreme wildfire risks to water supply

    Get PDF
    2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019–2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water‐related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the extreme precipitation (“200 mm day −1 in several location”) that interrupted the catastrophic wildfire season triggered a series of watershed effects from headwaters to areas downstream. The increased runoff and erosion from burned areas disrupted water supplies in several locations. These post‐fire watershed hazards via source water contamination, flash floods, and mudslides can represent substantial, systemic long‐term risks to drinking water production, aquatic life, and socio‐economic activity. Scenarios similar to the recent event in Australia are now predicted to unfold in the Western USA. This is a new reality that societies will have to live with as uncharted fire activity, water crises, and widespread human footprint collide all‐around of the world. Therefore, we advocate for a more proactive approach to wildfire‐watershed risk governance in an effort to advance and protect water security. We also argue that there is no easy solution to reducing this risk and that investments in both green (i.e., natural) and grey (i.e., built) infrastructure will be necessary. Further, we propose strategies to combine modern data analytics with existing tools for use by water and land managers worldwide to leverage several decades worth of data and knowledge on post‐fire hydrology

    Shape programming for narrow ribbons of nematic elastomers

    Get PDF
    Using the theory of Γ-convergence, we derive from three-dimensional elasticity new one-dimensional models for non-Euclidean elastic ribbons, i.e., ribbons exhibiting spontaneous curvature and twist. We apply the models to shape-selection problems for thin films of nematic elastomers with twist and splay-bend texture of the nematic director. For the former, we discuss the possibility of helicoid-like shapes as an alternative to spiral ribbons
    • 

    corecore