3,168 research outputs found
Astrometric signatures of self-gravitating protoplanetary discs
We use high resolution numerical simulations to study whether gravitational
instabilities within circumstellar discs can produce astrometrically detectable
motion of the central star. For discs with masses of M_disc = 0.1 M_star, which
are permanantly stable against fragmentation, we find that the magnitude of the
astrometric signal depends upon the efficiency of disc cooling. Short cooling
times produce prominent filamentary spiral structures in the disc, and lead to
stellar motions that are potentially observable with future high precision
astrometric experiments. For a disc that is marginally unstable within radii of
\~10 au, we estimate astrometric displacements of 10-100 microarcsec on decade
timescales for a star at a distance of 100 pc. The predicted displacement is
suppressed by a factor of several in more stable discs in which the cooling
time exceeds the local dynamical time by an order of magnitude. We find that
the largest contribution comes from material in the outer regions of the disc
and hence, in the most pessimistic scenario, the stellar motions caused by the
disc could confuse astrometric searches for low mass planets orbiting at large
radii. They are, however, unlikely to present any complications in searches for
embedded planets orbiting at small radii, relative to the disc size, or Jupiter
mass planets or greater orbiting at large radii.Comment: 6 pages, 9 figures, accepted for publication in MNRA
Stellar Encounters with Massive Star-Disk Systems
The dense, clustered environment in which massive stars form can lead to
interactions with neighboring stars. It has been hypothesized that collisions
and mergers may contribute to the growth of the most massive stars. In this
paper we extend the study of star-disk interactions to explore encounters
between a massive protostar and a less massive cluster sibling using the
publicly available SPH code GADGET-2. Collisions do not occur in the parameter
space studied, but the end state of many encounters is an eccentric binary with
a semi-major axis ~ 100 AU. Disk material is sometimes captured by the
impactor. Most encounters result in disruption and destruction of the initial
disk, and periodic torquing of the remnant disk. We consider the effect of the
changing orientation of the disk on an accretion driven jet, and the evolution
of the systems in the presence of on-going accretion from the parent core.Comment: 11 pages, 10 figures, accepted to Ap
Lost in translation: a multi-level case study of the metamorphosis of meanings and action in public sector organisational innovation
This paper explores the early implementation of an organisational innovation in the UK National Health Service (NHS) - Treatment Centres (TCs) - designed to dramatically reduce waiting lists for elective care. The paper draws on case studies of eight TCs (each at varying stages of their development) and aims to explore how meanings about TCs are created and evolve, and how these meanings impact upon the development of the organisational innovation. Research on organisational meanings needs to take greater account of the fact that modern organisations like the NHS are complex multi-level phenomena, comprising layers of interlacing networks. To understand the pace, direction and impact of organisational innovation and change we need to study the interconnections between meanings across different organisational levels. The data presented in this paper show how the apparently simple, relatively unformed, concept of a TC framed by central government, is translated and transmuted by subsequent layers in the health service administration, and by players in local health economies and, ultimately in the TCs themselves, picking up new rationales, meanings, and significance as it goes. The developmental histories of TCs reveal a range of significant re-workings of macro policy with the result that there is considerable diversity and variation between local TC schemes. The picture is of important disconnections between meanings, that in many ways mirror Weick’s (1976) ‘loosely coupled systems’. The emergent meanings and the direction of micro-level development of TCs appear more strongly determined by interactions within the local TC environment, notably between what we identify as groups of ‘idealists’, ‘pragmatists’, ‘opportunists’ and ‘sceptics’ than by the framing (Goffman 1974) provided by macro and meso organisational levels. While this illustrates the limitations of top down and policy-driven attempts at change, and highlights the crucial importance of the front-line local ‘micro-systems’ (Donaldson & Mohr, 2000) in the overall scheme of implementing organisational innovations, the space or headroom provided by frames at the macro and meso levels can enable local change, albeit at variable speed and with uncertain outcomes
A discontinuity in the low-mass initial mass function
The origin of brown dwarfs (BDs) is still an unsolved mystery. While the
standard model describes the formation of BDs and stars in a similar way recent
data on the multiplicity properties of stars and BDs show them to have
different binary distribution functions. Here we show that proper treatment of
these uncovers a discontinuity of the multiplicity-corrected mass distribution
in the very-low-mass star (VLMS) and BD mass regime. A continuous IMF can be
discarded with extremely high confidence. This suggests that VLMSs and BDs on
the one hand, and stars on the other, are two correlated but disjoint
populations with different dynamical histories. The analysis presented here
suggests that about one BD forms per five stars and that the BD-star binary
fraction is about 2%-3% among stellar systems.Comment: 14 pages, 11 figures, uses emulateapj.cls. Minor corrections and 1
reference added after being accepted by the Ap
Toroidal vortices as a solution to the dust migration problem
PublishedJournal Article© 2016 The Authors.In an earlier letter, we reported that dust settling in protoplanetary discs may lead to a dynamical dust-gas instability that produces global toroidal vortices. In this Letter, we investigate the evolution of a dusty protoplanetary disc with two different dust species (1 mm and 50 cm dust grains), under the presence of the instability. We show how toroidal vortices, triggered by the interaction of mm grains with the gas, stop the radial migration of metre-sized dust, potentially offering a natural and efficient solution to the dust migration problem.The figures were created using SPLASH (Price 2007), an SPH visualization tool publicly available at http://users.monash.edu.au/∼dprice/splash.
This Letter was supported by the STFC consolidated grant ST/J001627/1, and by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013 grant agreement no. 339248). This Letter used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National E-Infrastructure. This Letter also used the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter
Apparatus for establishing flow of a fluid mass having a known velocity
An apparatus for establishing a flow of fluid mass, such as gas, having a known velocity is introduced. The apparatus is characterized by an hermetically sealed chamber conforming to a closed-loop configuration and including a throat and a plurality of axially displaceable pistons for sweeping through the throat a stream of gas including a core and an unsheared boundary layer. Within the throat there is a cylindrical coring body concentrically related to the throat for receiving the core, and a chamber surrounding the cylindrical body for drawing off the boundary layer, whereby the velocity of the core is liberated from the effects of the velocity of the boundary layer
A natural formation scenario for misaligned and short-period eccentric extrasolar planets
Recent discoveries of strongly misaligned transiting exoplanets pose a
challenge to the established planet formation theory which assumes planetary
systems to form and evolve in isolation. However, the fact that the majority of
stars actually do form in star clusters raises the question how isolated
forming planetary systems really are. Besides radiative and tidal forces the
presence of dense gas aggregates in star-forming regions are potential sources
for perturbations to protoplanetary discs or systems. Here we show that
subsequent capture of gas from large extended accretion envelopes onto a
passing star with a typical circumstellar disc can tilt the disc plane to
retrograde orientation, naturally explaining the formation of strongly inclined
planetary systems. Furthermore, the inner disc regions may become denser, and
thus more prone to speedy coagulation and planet formation. Pre-existing
planetary systems are compressed by gas inflows leading to a natural occurrence
of close-in misaligned hot Jupiters and short-period eccentric planets. The
likelihood of such events mainly depends on the gas content of the cluster and
is thus expected to be highest in the youngest star clusters.Comment: 7 pages, 4 figures. Accepted for publication in MNRAS. Updated to
match published versio
Substellar companions and isolated planetary mass objects from protostellar disc fragmentation
Self-gravitating protostellar discs are unstable to fragmentation if the gas
can cool on a time scale that is short compared to the orbital period. We use a
combination of hydrodynamic simulations and N-body orbit integrations to study
the long term evolution of a fragmenting disc with an initial mass ratio to the
star of M_disc/M_star = 0.1. For a disc which is initially unstable across a
range of radii, a combination of collapse and subsequent accretion yields
substellar objects with a spectrum of masses extending (for a Solar mass star)
up to ~0.01 M_sun. Subsequent gravitational evolution ejects most of the lower
mass objects within a few million years, leaving a small number of very massive
planets or brown dwarfs in eccentric orbits at moderately small radii. Based on
these results, systems such as HD 168443 -- in which the companions are close
to or beyond the deuterium burning limit -- appear to be the best candidates to
have formed via gravitational instability. If massive substellar companions
originate from disc fragmentation, while lower-mass planetary companions
originate from core accretion, the metallicity distribution of stars which host
massive substellar companions at radii of ~1 au should differ from that of
stars with lower mass planetary companions.Comment: 5 pages, accepted for publication in MNRA
Radiation Driven Implosion and Triggered Star Formation
We present simulations of initially stable isothermal clouds exposed to
ionizing radiation from a discrete external source, and identify the conditions
that lead to radiatively driven implosion and star formation. We use the
Smoothed Particle Hydrodynamics code SEREN (Hubber et al. 2010) and the
HEALPix-based photoionization algorithm described in Bisbas et al. (2009). We
find that the incident ionizing flux is the critical parameter determining the
evolution: high fluxes simply disperse the cloud, whereas low fluxes trigger
star formation. We find a clear connection between the intensity of the
incident flux and the parameters of star formation.Comment: 4 pages, 2 figures, conference proceedings, IAU Symposium 270 (eds.
Alves, Elmegreen, Girart, Trimble
Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse
We model gravitational collapse leading to star formation in a wide range of
isolated disk galaxies using a three-dimensional, smoothed particle
hydrodynamics code. The model galaxies include a dark matter halo and a disk of
stars and isothermal gas. Absorbing sink particles are used to directly measure
the mass of gravitationally collapsing gas. They reach masses characteristic of
stellar clusters. In this paper, we describe our galaxy models and numerical
methods, followed by an investigation of the gravitational instability in these
galaxies. Gravitational collapse forms star clusters with correlated positions
and ages, as observed, for example, in the Large Magellanic Cloud.
Gravitational instability alone acting in unperturbed galaxies appears
sufficient to produce flocculent spiral arms, though not more organized
patterns. Unstable galaxies show collapse in thin layers in the galactic plane;
associated dust will form thin dust lanes in those galaxies, in agreement with
observations. (abridged)Comment: 49 pages, 22 figures, to appear in ApJ (July, 2005), version with
high quality color images can be fond in
http://research.amnh.org/~yuexing/astro-ph/0501022.pd
- …
