21 research outputs found

    Lysyl oxidase drives tumour progression by trapping EGF receptors at the cell surface

    Get PDF
    Lysyl oxidase (LOX) remodels the tumour microenvironment by cross-linking the extracellular matrix. LOX overexpression is associated with poor cancer outcomes. Here, we find that LOX regulates the epidermal growth factor receptor (EGFR) to drive tumour progression. We show that LOX regulates EGFR by suppressing TGFÎČ1 signalling through the secreted protease HTRA1. This increases the expression of Matrilin2 (MATN2), an EGF-like domain-containing protein that traps EGFR at the cell surface to facilitate its activation by EGF. We describe a pharmacological inhibitor of LOX, CCT365623, which disrupts EGFR cell surface retention and delays the growth of primary and metastatic tumour cells in vivo. Thus, we show that LOX regulates EGFR cell surface retention to drive tumour progression, and we validate the therapeutic potential of inhibiting this pathway with the small molecule inhibitor CCT365623

    Collagen Dysregulation in the Dermis of the Sagg/+ Mouse: A Loose Skin Model

    Get PDF
    The Sagg/+ mouse is an ethylnitrosourea-derived mutant with a dermal phenotype similar to some of the subtypes of Ehlers-Danlos syndrome (EDS) and cutis laxa. The dermis of the Sagg/+ mouse has less dense and more disorganized collagen fibers compared to controls. The size of extracted Type I dermal collagen was the same as that observed in normal skin; however, more collagen could be extracted from Sagg/ + skin, which also showed decreased collagen content and decreased steady-state levels of α1(I), α2(I), α1(V), and α2(V) procollagen mRNAs. The biomechanical properties of Sagg/+ skin were significantly decreased relative to normal skin. However, there were no significant differences in the quantities of the major collagen cross-links, that is, dehydrohydroxylysinonorleucine and dehydrohistidinohydroxymerodesmosine between Sagg/+ and normal skin. Electron microscopic evaluation of Sagg/+ skin indicated that the mutation interferes with the proper formation of collagen fibrils and the data are consistent with a mutation in Type V collagen leading to haploinsufficiency with the formation of two sub-populations of collagen fibrils, one normal and one with irregular shape and a larger diameter. Further study of this novel mutation will allow the identification of new mechanisms involved in the regulation of normal and pathologic collagen gene expression

    Tracking Endogenous Amelogenin and Ameloblastin In Vivo

    Get PDF
    Research on enamel matrix proteins (EMPs) is centered on understanding their role in enamel biomineralization and their bioactivity for tissue engineering. While therapeutic application of EMPs has been widely documented, their expression and biological function in non-enamel tissues is unclear. Our first aim was to screen for amelogenin (AMELX) and ameloblastin (AMBN) gene expression in mandibular bones and soft tissues isolated from adult mice (15 weeks old). Using RT-PCR, we showed mRNA expression of AMELX and AMBN in mandibular alveolar and basal bones and, at low levels, in several soft tissues; eyes and ovaries were RNA-positive for AMELX and eyes, tongues and testicles for AMBN. Moreover, in mandibular tissues AMELX and AMBN mRNA levels varied according to two parameters: 1) ontogenic stage (decreasing with age), and 2) tissue-type (e.g. higher level in dental epithelial cells and alveolar bone when compared to basal bone and dental mesenchymal cells in 1 week old mice). In situ hybridization and immunohistodetection were performed in mandibular tissues using AMELX KO mice as controls. We identified AMELX-producing (RNA-positive) cells lining the adjacent alveolar bone and AMBN and AMELX proteins in the microenvironment surrounding EMPs-producing cells. Western blotting of proteins extracted by non-dissociative means revealed that AMELX and AMBN are not exclusive to mineralized matrix; they are present to some degree in a solubilized state in mandibular bone and presumably have some capacity to diffuse. Our data support the notion that AMELX and AMBN may function as growth factor-like molecules solubilized in the aqueous microenvironment. In jaws, they might play some role in bone physiology through autocrine/paracrine pathways, particularly during development and stress-induced remodeling

    Tension stimulation drives tissue formation in scaffold-free systems

    Full text link
    Scaffold-free systems have emerged as viable approaches for engineering load-bearing tissues. However, the tensile properties of engineered tissues have remained far below the values for native tissue. Here, by using self-assembled articular cartilage as a model to examine the effects of intermittent and continuous tension stimulation on tissue formation, we show that the application of tension alone, or in combination with matrix remodelling and synthesis agents, leads to neocartilage with tensile properties approaching those of native tissue. Implantation of tension-stimulated tissues results in neotissues that are morphologically reminiscent of native cartilage. We also show that tension stimulation can be translated to a human cell source to generate anisotropic human neocartilage with enhanced tensile properties. Tension stimulation, which results in nearly sixfold improvements in tensile properties over unstimulated controls, may allow the engineering of mechanically robust biological replacements of native tissue

    A novel mutation in the lysyl hydroxylase 1 gene causes decreased lysyl hydroxylase activity in an Ehlers-Danlos VIA patient

    Get PDF
    The clinical diagnosis of a patient with the phenotype of Ehlers–Danlos syndrome type VI was confirmed biochemically by the severely diminished level of lysyl hydroxylase (LH) activity in the patient's skin fibroblasts. A novel homozygous mutation, a single base change of T1360→G in exon 13 of the LH1 gene, predicted to result in W446G, was identified in the patient's full-length cDNA. This was confirmed in genomic DNA from both the patient and her parents, who were heterozygous for the mutation. This mutation was introduced into an LH1-pAcGP67 baculoviral construct and expressed, in parallel with normal LH1, in an insect cell system. The loss of LH activity in the mutated recombinant construct confirmed the pathogenicity of this mutation. Although not in the major catalytic site, this mutation occurs in a highly conserved region of the LH1 gene and may contribute to loss of activity by interfering with normal folding of the enzyme
    corecore