755 research outputs found

    Infrared spectroscopy of cataclysmic variables: III. Dwarf novae below the period gap and novalike variables

    Get PDF
    We present K-band spectra of the short-period dwarf novae YZ Cnc, LY Hya, BK Lyn, T Leo, SW UMa and WZ Sge, the novalike variables DW UMa, V1315 Aql, RW Tri, VY Scl, UU Aqr and GP Com, and a series of field dwarf stars with spectral types ranging from K2-M6. The spectra of the dwarf novae are dominated by emission lines of HI and HeI. The large velocity and equivalent widths of these lines, in conjunction with the fact that the lines are double-peaked in the highest inclination systems, indicate an accretion disc origin. In the case of YZ Cnc and T Leo, for which we obtained time-resolved data covering a complete orbital cycle, the emission lines show modulations in their equivalent widths which are most probably associated with the bright spot (the region where the gas stream collides with the accretion disc). There are no clear detections of the secondary star in any of the dwarf novae below the period gap, yielding upper limits of 10-30% for the contribution of the secondary star to the observed K-band flux. In conjunction with the K-band magnitudes of the dwarf novae, we use the derived secondary star contributions to calculate lower limits to the distances to these systems. The spectra of the novalike variables are dominated by broad, single-peaked emission lines of HI and HeI - even the eclipsing systems we observed do not show the double-peaked profiles predicted by standard accretion disc theory. With the exception of RW Tri, which exhibits NaI, CaI and 12CO absorption features consistent with a M0V secondary contributing 65% of the observed K-band flux, we find no evidence for the secondary star in any of the novalike variables. The implications of this result are discussed.Comment: 13 pages, 5 figures, to appear in MNRA

    UBVRI photopolarimetry of the long period eclipsing AM Herculis binary V1309

    Get PDF
    We report simultaneous UBVRI photo-polarimetric observations of the long period (7.98 h) AM Her binary V1309 Ori. The length and shape of the eclipse ingress and egress varies from night to night. We suggest this is due to the variation in the brightness of the accretion stream. By comparing the phases of circular polarization zero-crossovers with previous observations, we confirm that V1309 Ori is well synchronized, and find an upper limit of 0.002 percent for the difference between the spin and orbital periods. We model the polarimetry data using a model consisting of two cyclotron emission regions at almost diametrically opposite locations, and centered at colatitude 35 (deg) and 145 (deg) on the surface of the white dwarf. We also present archive X-ray observations which show that the negatively polarised accretion region is X-ray bright.Comment: 11 pages, 12 figures (2 colour), Fig1 and Fig 4 are in lower resolution than in original paper, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air

    Get PDF
    The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (εapp) for mid- and high-latitude stratospheric samples are (-2.4±0.5) ‰ and (-2.3±0.4) ‰ for CFC-11, (-12.2±1.6) ‰ and (-6.8±0.8) ‰ for CFC-12 and (-3.5±1.5) ‰ and (-3.3±1.2) ‰ for CFC-113, respectively. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere-troposphere exchange. We compare these projections to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). From 1970 to the present-day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties a constant average emission isotope delta is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope delta has been affected by changes in CFC manufacturing processes, or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 ml), using a single-detector gas chromatography-mass spectrometry system

    Kinetic Resolution in Asymmetric Epoxidation using Iminium Salt Catalysis

    Get PDF
    The first reported examples of kinetic resolution in epoxidation reactions using iminium salt catalysis are described, providing up to 99% ee in the epoxidation of racemic cis-chromenes

    The Quiescent Spectrum of the AM CVn star CP Eri

    Get PDF
    We used the 6.5m MMT to obtain a spectrum of the AM CVn star CP Eri in quiescence. The spectrum is dominated by He I emission lines, which are clearly double peaked with a peak-to-peak separation of ~1900 km/s. The spectrum is similar to that of the longer period AM CVn systems GP Com and CE 315, linking the short and the long period AM CVn systems. In contrast with GP Com and CE 315, the spectrum of CP Eri does not show a central 'spike' in the line profiles, but it does show lines of SiII in emission. The presence of these lines indicates that the material being transferred is of higher metallicity than in GP Com and CE 315, which, combined with the low proper motion of the system, probably excludes a halo origin of the progenitor of CP Eri. We constrain the primary mass to M_1>0.27 M_sun and the orbital inclination to 33 degr < i < 80 degr. The presence of the He I lines in emission opens up the possibility for phase resolved spectroscopic studies which allows a determination of the system parameters and a detailed study of helium accretion disks under highly varying circumstances.Comment: 12 pages, 2 figures, accepted for publication in ApJ Letter

    A Population of Faint Non-Transient Low Mass Black Hole Binaries

    Full text link
    We study the thermal and viscous stability of accretion flows in Low Mass Black Hole Binaries (LMBHBs). We consider a model in which an inner advection-dominated accretion flow (ADAF) is surrounded by a geometrically thin accretion disk, the transition between the two zones occurring at a radius R_tr. In all the known LMBHBs, R_tr appears to be such that the outer disks could suffer from a global thermal-viscous instability. This instability is likely to cause the transient behavior of these systems. However, in most cases, if R_tr were slightly larger than the estimated values, the systems would be globally stable. This suggests that a population of faint persistent LMBHBs with globally stable outer disks could be present in the Galaxy. Such LMBHBs would be hard to detect because they would lack large amplitude outbursts, and because their ADAF zones would have very low radiative efficiencies, making the systems very dim. We present model spectra of such systems covering the optical and X-ray bands.Comment: LateX, 37 pages, 11 figures; Accepted for publication in The Astrophysical Journa

    The LMC supersoft X-ray binary RX J0513.9-6951

    Get PDF
    A detailed analysis of simultaneous photometric and spectroscopic observations of the optical counterpart of the LMC "supersoft" X-ray source RX J0513.9-6951 (identified with HV 5682) is presented. The spectrum is dominated by He II emission lines and H + He II blends; no He I is observed but several higher ionization emission features, especially O VI (3811, 3834, and 5290A) are prominent. Radial velocity measurements suggest a binary period of 0.76 days. If the small velocity amplitude, K~11 km/s, is interpreted as orbital motion, this implies that the binary system contains a somewhat evolved star plus a relatively massive compact object, viewed nearly pole-on. No orbital photometric variations were found, although irregular brightness changes of ~0.3 mag occurred. Unusual emission lines are observed which cannot be identified except as high velocity (4000 km/s) bipolar outflows or jets. These outflows are seen in H and He II at the same positive and negative velocities. They were relatively stable for periods of ~5 days, but their velocities appear to have been ~250 km/s smaller in 1992 than in 1993 or 1994

    The nature of dwarf nova outbursts

    Get PDF
    We show that if the dwarf-nova disc instability model includes the effects of heating by stream impact and tidal torque dissipation in the outer disc, the calculated properties of dwarf-nova outbursts change considerably, and several notorious deficiencies of this model are repaired. In particular: (1) outside-in outbursts occur for mass transfer rates lower than in the standard model as required by observations; (2) the presence of long (wide) and short (narrow) outbursts with similar peak luminosities is a natural property of the model. Mass-transfer fluctuations by factors ~ 2 can explain the occurrence of both long and short outbursts above the cataclysmic variable period gap, whereas below 2 hr only short normal outbursts are expected (in addition to superoutbursts which are not dealt with in this article). With additional heating by the stream and tidal torques, such fluctuations can also explain the occurrence of both outside-in and inside-out outbursts in SS Cyg and similar systems. The occurrence of outside-in outbursts in short orbital-period, low mass-transfer-rate systems requires the disc to be much smaller than the tidal-truncation radius. In this case the recurrence time of both inside-out and outside-in outbursts have a similar dependence on the mass-transfer rate.Comment: 11 pages, 8 figures Submitted to Astronomy and Astrophysic
    corecore