485 research outputs found

    Efficient measurement-based quantum computing with continuous-variable systems

    Get PDF
    We present strictly efficient schemes for scalable measurement-based quantum computing using continuous-variable systems: These schemes are based on suitable non-Gaussian resource states, ones that can be prepared using interactions of light with matter systems or even purely optically. Merely Gaussian measurements such as optical homodyning as well as photon counting measurements are required, on individual sites. These schemes overcome limitations posed by Gaussian cluster states, which are known not to be universal for quantum computations of unbounded length, unless one is willing to scale the degree of squeezing with the total system size. We establish a framework derived from tensor networks and matrix product states with infinite physical dimension and finite auxiliary dimension general enough to provide a framework for such schemes. Since in the discussed schemes the logical encoding is finite-dimensional, tools of error correction are applicable. We also identify some further limitations for any continuous-variable computing scheme from which one can argue that no substantially easier ways of continuous-variable measurement-based computing than the presented one can exist.Comment: 13 pages, 3 figures, published versio

    Discurso sobre uma fundamentação ontológica da informação

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Faculdade de Ciência da Informação, Programa de Pós-Graduação em Ciência da Informação, 2014.Essa dissertação investiga questões fundamentais na Ciência da Informação a partir de uma perspectiva adotada pela disciplina de Arquitetura da Informação, fundamentada na Teoria Geral da Arquitetura da Informação e na Fenomenologia de Husserl. O objetivo deste trabalho é propor uma caracterização sobre a natureza da informação, a partir da consideração do referencial Ontológico como sugerido na disciplina de Arquitetura da Informação do grupo de Brasília. É feita uma identificação da evolução conceitual da natureza da informação a partir da Filosofia Natural até os dias atuais. É caracterizado o problema da natureza da informação na Ciência da Informação. Relaciona-se o conceito de informação identificado nos campos da Ciência com a proposta de informação Ontológica do grupo de Brasília de Arquitetura da Informação. Este trabalho se trata de uma investigação de natureza Epistemológica, utilizando-se o método Fenomenológico com pesquisa de abordagem explicativa. Apresenta-se uma proposta de alteração gráfica do modelo Ontológico utilizado na disciplina de Arquitetura da Informação para considerar a informação como aquilo que determina a natureza do Ente e aquilo que determina a natureza das Relações. Apresenta-se a possibilidade de convergência conceitual da informação apenas no nível Ontológico. Isso mostra que o caminho mais promissor para se chegar a uma definição de informação é através da Ontologia. _________________________________________________________________________________________________ ABSTRACTThis dissertation investigates fundamental questions in Science of Information from the perspective adopted by discipline Architecture of information, based on the theoretical framework of Architecture of Information and Husserl’s phenomenology. The objective of this work is to propose a characterization of the nature of information, from the consideration of the Ontological reference as suggested in Architecture of Information discipline of Brasilia group. An identification of the conceptual evolution of the nature of the information from the Natural Philosophy to the present day is made. It is characterized the problem of the nature of information in information science. It relates to the concept of information identified in the fields of Science with the proposal of Ontological information from Brasilia group of Architecture of Information. This work is an epistemological research, using the Phenomenological method explanatory approach research. It presents a graphic amendment of the Ontological model used in Architecture of Information’s discipline to consider information as that which determines the nature of Being and what determines the nature of Relations. It presents the possibility of conceptual convergence of information only on the Ontological level. This shows that the most promising way to arrive at a definition of information is through the Ontology

    Experimentally realizable quantum comparison of coherent states and its applications

    Get PDF
    When comparing quantum states to each other, it is possible to obtain an unambiguous answer, indicating that the states are definitely different, already after a single measurement. In this paper we investigate comparison of coherent states, which is the simplest example of quantum state comparison for continuous variables. The method we present has a high success probability, and is experimentally feasible to realize as the only required components are beam splitters and photon detectors. An easily realizable method for quantum state comparison could be important for real applications. As examples of such applications we present a "lock and key" scheme and a simple scheme for quantum public key distribution.Comment: 14 pages, 5 figures, version one submitted to PRA. Version two is the final accepted versio

    From Linear Optical Quantum Computing to Heisenberg-Limited Interferometry

    Get PDF
    The working principles of linear optical quantum computing are based on photodetection, namely, projective measurements. The use of photodetection can provide efficient nonlinear interactions between photons at the single-photon level, which is technically problematic otherwise. We report an application of such a technique to prepare quantum correlations as an important resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be improved beyond the usual shot-noise limit. Furthermore, using such nonlinearities, optical quantum nondemolition measurements can now be carried out at the single-photon level.Comment: 10 pages, 5 figures; Submitted to a Special Issue of J. Opt. B on "Fluctuations and Noise in Photonics and Quantum Optics" (Herman Haus Memorial Issue); v2: minor change

    Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera

    Full text link
    The measurement of photon-number statistics of fields composed of photon pairs, generated in spontaneous parametric down-conversion and detected by an intensified CCD camera is described. Final quantum detection efficiencies, electronic noises, finite numbers of detector pixels, transverse intensity spatial profiles of the detected beams as well as losses of single photons from a pair are taken into account in a developed general theory of photon-number detection. The measured data provided by an iCCD camera with single-photon detection sensitivity are analyzed along the developed theory. Joint signal-idler photon-number distributions are recovered using the reconstruction method based on the principle of maximum likelihood. The range of applicability of the method is discussed. The reconstructed joint signal-idler photon-number distribution is compared with that obtained by a method that uses superposition of signal and noise and minimizes photoelectron entropy. Statistics of the reconstructed fields are identified to be multi-mode Gaussian. Elements of the measured as well as the reconstructed joint signal-idler photon-number distributions violate classical inequalities. Sub-shot-noise correlations in the difference of the signal and idler photon numbers as well as partial suppression of odd elements in the distribution of the sum of signal and idler photon numbers are observed.Comment: 14 pages, 14 figure

    Investigations Using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    Get PDF
    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Moessbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter Missions and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fephyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 C) and high (725-820 C) temperature and an endothermic reaction in concert with the high temperature release. The high-temperature thermal decomposition is consistent with calcite, dolomite, or ankerite, (3-6 wt.%) or any combination of these phase based upon laboratory testbed experiments. Recent laboratory experiments suggest that the low temperature CO2 release was caused by a reaction between calcium carbonate and hydrated magnesium perchlorate; although, CO2 release by the oxidation of organic materials and Fe-/Mg-rich carbonates cannot be ruled out. MSL landed in Gale crater on August 5, 2012. Although numerous analog samples have been analyzed on the JSC laboratory testbeds, no SAM, CheMin, or ChemCam analyses have been acquired by MSL to date. The JSC SAM laboratory testbed consists of a thermal analyzer coupled with a MS configured to operate under total pressure (30 mbar), heating rate (35 C/min), and purge gas composition (He) analogous to the flight SAM. The CheMin and ChemCam laboratory testbeds were developed and built by inXitu, Inc. and Los Alamos National Laboratory, respectively, to acquire datasets relevant to the MSL CheMin and ChemCam flight instruments

    Empiric treatment of pulmonary TB in the Xpert era: Correspondence of sputum culture, Xpert MTB/RIF, and clinical diagnoses.

    Get PDF
    BackgroundClinical tuberculosis diagnosis and empiric treatment have traditionally been common among patients with negative bacteriologic test results. Increasing availability of rapid molecular diagnostic tests, including Xpert MTB/RIF and the new Xpert Ultra cartridge, may alter the role of empiric treatment.MethodsWe prospectively enrolled outpatients age > = 15 who were evaluated for pulmonary tuberculosis at three health facilities in Kampala, Uganda. Using sputum mycobacterial culture, interviews, and clinical record abstraction, we estimated the accuracy of clinical diagnosis relative to Xpert and sputum culture and assessed the contribution of clinical diagnosis to case detection.ResultsOver a period of 9 months, 99 patients were diagnosed with pulmonary tuberculosis and subsequently completed sputum culture; they were matched to 196 patients receiving negative tuberculosis evaluations in the same facilities. Xpert was included in the evaluation of 291 (99%) patients. Compared to culture, Xpert had a sensitivity of 92% (95% confidence interval 83-97%) and specificity of 95% (92-98%). Twenty patients with negative Xpert were clinically diagnosed with tuberculosis and subsequently had their culture status determined; two (10%) were culture-positive. Considering all treated patients regardless of Xpert and culture data completeness, and considering treatment initiations before a positive Xpert (N = 4) to be empiric, 26/101 (26%) tuberculosis treatment courses were started empirically. Compared to sputum smear- or Xpert-positive patients with positive cultures, empirically-treated, Xpert-negative patients with negative cultures had higher prevalence of HIV (67% versus 37%), shorter duration of cough (median 4 versus 8 weeks), and lower inflammatory markers (median CRP 7 versus 101 mg/L).ConclusionJudged against sputum culture in a routine care setting of high HIV prevalence, the accuracy of Xpert was high. Clinical judgment identified a small number of additional culture-positive cases, but with poor specificity. Although clinicians should continue to prescribe tuberculosis treatment for Xpert-negative patients whose clinical presentations strongly suggest pulmonary tuberculosis, they should also carefully consider alternative diagnoses

    A Study of the Reinforcement Effect of MWCNTs onto Polyimide Flat Sheet Membranes

    Get PDF
    Polyimides rank among the most heat-resistant polymers and find application in a variety of fields, including transportation, electronics, and membrane technology. The aim of this work is to study the structural, thermal, mechanical, and gas permeation properties of polyimide based nanocomposite membranes in flat sheet configuration. For this purpose, numerous advanced techniques such as atomic force microscopy (AFM), SEM, TEM, TGA, FT-IR, tensile strength, elongation test, and gas permeability measurements were carried out. In particular, BTDA–TDI/MDI (P84) co-polyimide was used as the matrix of the studied membranes, whereas multi-wall carbon nanotubes were employed as filler material at concentrations of up to 5 wt.% All studied films were prepared by the dry-cast process resulting in non-porous films of about 30–50 μm of thickness. An optimum filler concentration of 2 wt.% was estimated. At this concentration, both thermal and mechanical properties of the prepared membranes were improved, and the highest gas permeability values were also obtained. Finally, gas permeability experiments were carried out at 25, 50, and 100 ◦C with seven different pure gases. The results revealed that the uniform carbon nanotubes dispersion lead to enhanced gas permeation properties

    An avalanche-photodiode-based photon-number-resolving detector

    Full text link
    Avalanche photodiodes are widely used as practical detectors of single photons.1 Although conventional devices respond to one or more photons, they cannot resolve the number in the incident pulse or short time interval. However, such photon number resolving detectors are urgently needed for applications in quantum computing,2-4 communications5 and interferometry,6 as well as for extending the applicability of quantum detection generally. Here we show that, contrary to current belief,3,4 avalanche photodiodes are capable of detecting photon number, using a technique to measure very weak avalanches at the early stage of their development. Under such conditions the output signal from the avalanche photodiode is proportional to the number of photons in the incident pulse. As a compact, mass-manufactured device, operating without cryogens and at telecom wavelengths, it offers a practical solution for photon number detection.Comment: 12 pages, 4 figure

    Sharp two-sided heat kernel estimates for critical Schr\"odinger operators on bounded domains

    Full text link
    On a smooth bounded domain \Omega \subset R^N we consider the Schr\"odinger operators -\Delta -V, with V being either the critical borderline potential V(x)=(N-2)^2/4 |x|^{-2} or V(x)=(1/4) dist (x,\partial\Omega)^{-2}, under Dirichlet boundary conditions. In this work we obtain sharp two-sided estimates on the corresponding heat kernels. To this end we transform the Scr\"odinger operators into suitable degenerate operators, for which we prove a new parabolic Harnack inequality up to the boundary. To derive the Harnack inequality we have established a serier of new inequalities such as improved Hardy, logarithmic Hardy Sobolev, Hardy-Moser and weighted Poincar\'e. As a byproduct of our technique we are able to answer positively to a conjecture of E.B.Davies.Comment: 40 page
    corecore