13 research outputs found

    Pyridine nucleotides induce changes in cytosolic pools of calcium in Arabidopsis

    Get PDF
    NAD is a pyridine nucleotide that is involved in cell metabolism and signaling of plant growth and stress. Recently, we reported on the multifaceted nature of NAD-inducible immunity in Arabidopsis. We identified NAD as an integral regulator of multiple defense layers such as production of ROS, deposition of callose, stimulation of cell death and modulation of defense metabolism including the defense hormones SA, JA and ABA, and other defense-associated metabolites. Altogether, NAD-induced immune effects confer resistance to diverse pathogenic microbes. Our addendum to this work further demonstrates an impact of NAD on the cytosolic calcium pool, a well-known component of early plant defense response

    Metabolite profiling of non-sterile rhizosphere soil

    Get PDF
    Rhizosphere chemistry is the sum of root exudation chemicals, their breakdown products and the microbial products of soil-derived chemicals. To date, most studies about root exudation chemistry are based on sterile cultivation systems, which limits the discovery of microbial breakdown products that act as semiochemicals and shape microbial rhizosphere communities. Here, we present a method for untargeted metabolic profiling of non-sterile rhizosphere soil. We have developed an experimental growth system that enables the collection and analysis of rhizosphere chemicals from different plant species. High-throughput sequencing of 16SrRNA genes demonstrated that plants in the growth system support a microbial rhizosphere effect. To collect a range of (a)polar chemicals from the system, we developed extraction methods that do not cause detectable damage to root cells or soil-inhabiting microbes, thus preventing contamination with cellular metabolites. Untargeted metabolite profiling by UPLC-Q-TOF mass spectrometry, followed by uni- and multivariate statistical analyses, identified a wide range of secondary metabolites that are enriched in plant-containing soil, compared with control soil without roots. We show that the method is suitable for profiling the rhizosphere chemistry of Zea mays (maize) in agricultural soil, thereby demonstrating the applicability to different plant-soil combinations. Our study provides a robust method for the comprehensive metabolite profiling of non-sterile rhizosphere soil, which represents a technical advance towards the establishment of causal relationships between the chemistry and microbial composition of the rhizosphere

    Unravelling plant responses to stress—the importance of targeted and untargeted metabolomics

    Get PDF
    Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant–insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant–insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance

    Metabolic regulation of the maize rhizobiome by benzoxazinoids

    Get PDF
    The rhizobiome is an important regulator of plant growth and health. Plants shape their rhizobiome communities through production and release of primary and secondary root metabolites. Benzoxazinoids (BXs) are common tryptophan-derived secondary metabolites in grasses that regulate belowground and aboveground biotic interactions. In addition to their biocidal activity, BXs can regulate plant–biotic interactions as semiochemicals or within-plant defence signals. However, the full extent and mechanisms by which BXs shape the root-associated microbiome has remained largely unexplored. Here, we have taken a global approach to examine the regulatory activity of BXs on the maize root metabolome and associated bacterial and fungal communities. Using untargeted mass spectrometry analysis in combination with prokaryotic and fungal amplicon sequencing, we compared the impacts of three genetic mutations in different steps in the BX pathway. We show that BXs regulate global root metabolism and concurrently influence the rhizobiome in a root type-dependent manner. Correlation analysis between BX-controlled root metabolites and bacterial taxa suggested a dominant role for BX-dependent metabolites, particularly flavonoids, in constraining a range of soil microbial taxa, while stimulating methylophilic bacteria. Our study supports a multilateral model by which BXs control root–microbe interactions via a global regulatory function in root secondary metabolism

    Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1

    Get PDF
    Plant development and function are underpinned by redox reactions that depend on co-factors such as nicotinamide adenine dinucleotide (NAD). NAD has recently been shown to be involved in several signalling pathways that are associated with stress tolerance or defence responses. However, the mechanisms by which NAD influences plant gene regulation, metabolism and physiology still remain unclear. Here, we took advantage of Arabidopsis thaliana lines that overexpressed the nadC gene from E. coli, which encodes the NAD biosynthesis enzyme quinolinate phosphoribosyltransferase (QPT). Upon incubation with quinolinate, these lines accumulated NAD and were thus used as inducible systems to determine the consequences of an increased NAD content in leaves. Metabolic profiling showed clear changes in several metabolites such as aspartate-derived amino acids and NAD-derived nicotinic acid. Large-scale transcriptomic analyses indicated that NAD promoted the induction of various pathogen-related genes such as the salicylic acid (SA)-responsive defence marker PR1. Extensive comparison with transcriptomic databases further showed that gene expression under high NAD content was similar to that obtained under biotic stress, eliciting conditions or SA treatment. Upon inoculation with the avirulent strain of Pseudomonas syringae pv. tomato Pst-AvrRpm1, the nadC lines showed enhanced resistance to bacteria infection and exhibited an ICS1-dependent build-up of both conjugated and free SA pools. We therefore concluded that higher NAD contents are beneficial for plant immunity by stimulating SA-dependent signalling and pathogen resistance

    Photoperiod affects the phenotype of mitochondrial complex I mutants

    Get PDF
    Plant mutants for genes encoding subunits of mitochondrial Complex I (CI, NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis thaliana CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit, and the previously characterized ndufs4 CI mutant. In long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Col-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher AOX content/activity and displayed a growth-retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than ndufs8.1 ndufs8.2 under short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD as compared to the WT. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the WT. The typical LD acclimation of carbon, nitrogen-assimilation and redox-related parameters was not observed in ndufs8.1 ndufs8. Similarly, NAD(H) content, that was higher in SD condition in both mutants than in Col-0, did not adjust under LD. We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of Complex I mutants and photoperiod acclimation in Arabidopsis

    Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    Get PDF
    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but is hypersensitive to BABA-induced growth repression. IBI1 encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of the R enantiomer of BABA to IBI1 primed the protein for noncanonical defense signaling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth

    NAD acts as an integral regulator of multiple defense layers

    No full text
    Pyridine nucleotides, such as nicotinamide adenine dinucleotide (NAD), are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis thaliana (Arabidopsis) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv. tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii and Botrytis cinerea. Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to that of defense-expressing plants after treatment with pathogen-associated molecular patterns (PAMPs). We thus conclude that NAD triggers metabolic profiles rather similar to that of PAMPs and discuss how signaling crosstalk between defense hormones, ROS and NAD explains the observed resistance to pathogens

    Another Tale from the Harsh World: How Plants Adapt to Extreme Environments

    No full text
    The environmental fluctuations of a constantly evolving world can mould a changing context, often unfavourable to sessile organisms that must adjust their resource allocation between both resistance or tolerance mechanisms and growth. Plants bear the fascinating ability to survive and thrive under extreme conditions, a capacity that has always attracted the curiosity of humans, who have discovered and improved species capable of meeting our physiological needs. In this context, plant research has produced a great wealth of knowledge on the responses of plants to a range of abiotic stresses, mostly considering model species and/or controlled conditions. However, there is still minimal comprehension of plant adaptations and acclimations to extreme environments, which cries out for future investigations. In this article, we examined the main advances in understanding the adapted traits fixed through evolution that allowed for plant resistance against abiotic stress in extreme natural ecosystems. Spatio-temporal adaptations from extremophile plant species are described from morpho-anatomical features to physiological function and metabolic pathways adjustments. Considering that metabolism is at the heart of plant adaptations, a focus is given to the study of primary and secondary metabolic adjustments as well as redox metabolism under extreme conditions. This article further casts a critical glance at the main successes in studying extreme environments and examines some of the challenges and opportunities this research offers, especially considering the possible interaction with ecology and metaphenomics
    corecore