The Plant Journal

the plant journal

METABOLITE PROFILING OF NON-STERILE RHIZOSPHERE SOIL

Journal:	The Plant Journal
Manuscript ID	TPJ-00076-2017.R2
Manuscript Type:	Technical Advance
Date Submitted by the Author:	11-Jul-2017
Complete List of Authors:	Pétriacq, Pierre; University of Sheffield, Animal and Plant Sciences Williams, Alex; University of Sheffield, Animal and Plant Sciences Cotton, T. E. Anne; University of Sheffield, Animal and Plant Sciences McFarlane, Alexander; University of Sheffield, Animal and Plant Sciences Rolfe, Stephen; University of Sheffield, Animal and Plant Sciences Ton, Jurriaan; University of Sheffield, Animal and Plant Sciences;
Key Words:	rhizosphere chemistry, rhizosphere microbiome, root exudates, metabolomics, Arabidopsis thaliana, soil, maize, benzoxazinoids

The Plant Journal

Rhizosphere metabolomics

4		Petriacq et al. Rhizosphere metabolomics
2		
2	1	METABOLITE PROFILING OF NON-STERILE RHIZOSPHERE SOIL
4	-	
5	2	
6	2	
7		$\mathbf{D}'_{1} = \mathbf{D}'_{1} = \mathbf{D}$
8	3	Pierre Petriacq ^{1, a} , Alex Williams ² , I. E. Anne Cotton ² , Alexander E. MicFarlane ² ,
9		
10	4	Stephen A. Rolfe ^{1,3} , & Jurriaan Ton ^{1,3} *
11		
12	5	
13		
14	6	¹ Plant Production and Protection (P ³) Institute for Translational Plant & Soil Biology,
15		
16	7	Department of Animal and Plant Sciences The University of Sheffield Sheffield S10
17		
18	Q	
19	0	
20	0	² biOMICS Excility Department of Animal and Diant Sciences. The University of
21	9	biomics Facility, Department of Animal and Plant Sciences, the University of
22		
23	10	Sneffield, Sneffield, S10 21N, UK
24 25		3
20	11	^o Department of Animal and Plant Sciences, The University of Sheffield, Sheffield,
20 27		
21	12	S10 2TN, UK
20		
30	13	
31		
32	14	* Corresponding authors: p.petriacg@sheffield.ac.uk and i.ton@sheffield.ac.uk
33		sen oppenning same of <u>provide queens and provide sentences</u>
34	15	
35	15	
36	16	Punning title: rhizosphoro motobolomics
37	10	
38	47	
39	17	
40		
41	18	Keywords: rhizosphere chemistry, rhizosphere microbiome, root exudates,
42		
43	19	metabolomics, Arabidopsis, maize, soil, benzoxazinoids.
44		
45	20	
46		
47	21	Significance statement: Multitrophic interactions in the rhizosphere are critical for
40 40		
49 50	22	plant growth and health, and are influenced by root exudates and their microbial
50		
52	23	breakdown products. In this study we describe a straightforward method for
53		
54	24	metabolic profiling of non-sterile rhizosphere soil which represents a powerful
55	24	
56		
57		
58		
59		

60

s, Arabidopsis, maize, soil, benzoxazinoids.

Rhizosphere metabolomics

2
3
4
5
6
7
2 2
0
9
10
11
12
13
14
15
10
16
17
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
20
30
37
38
39
40
41
12
7 <u>~</u> 12
43
44
45
46
47
48
10
+3 50
50
51
52
53
54
55
55
20
57
58
59

60

1

technique to identify novel semiochemicals that shape the microbial community
 structure and activity of the rhizosphere.

27

Word Count: Core (8955), Complete (14730), Summary (220), Significance 28 Statement (58), Introduction (987), Results (3404), Discussion (1941), Experimental 29 30 Procedures (977), Acknowledgements (89), Short Legends for Supporting ι (2. Intal Methou 31 Information (115), References (2110), Figure Legends (1337), Supplemental Figure 32 Legends (758), Supplemental Methods (2734).

 Pétriacq et al.

Rhizosphere metabolomics

SUMMARY

Rhizosphere chemistry is the sum of root exudation chemicals, their breakdown products and microbial products of soil-derived chemicals. To date, most studies about root exudation chemistry are based on sterile cultivation systems, which limits the discovery of microbial breakdown products that act as semiochemicals and shape microbial rhizosphere communities. Here, we present a method for untargeted metabolic profiling of non-sterile rhizosphere soil. We have developed an experimental growth system that enables collection and analysis of rhizosphere chemicals from different plant species. High-throughput sequencing of 16S rRNA genes demonstrated that plants in the growth system support a microbial rhizosphere effect. To collect a range of (a)polar chemicals from the system, we developed extraction methods that do not cause detectable damage to root cells or soil-inhabiting microbes, thus preventing contamination with cellular metabolites. Untargeted metabolite profiling by UPLC-Q-TOF mass spectrometry, followed by uni-and multivariate statistical analyses identified a wide range of secondary metabolites that are enriched in plant-containing soil compared to control soil without roots. We show that the method is suitable for profiling rhizosphere chemistry of maize in agricultural soil, demonstrating applicability to different plant-soil combinations. Our study provides a robust method for comprehensive metabolite profiling of non-sterile rhizosphere soil, which represents a technical advance towards the establishment of causal relationships between the chemistry and microbial composition of the rhizosphere.

INTRODUCTION

Rhizosphere metabolomics

Plant roots convert their associated soil into complex mesotrophic environments which support a highly diverse microbial community (Dessaux et al., 2016). This so-called rhizosphere effect is mediated by exudation of plant metabolites from roots (van Dam and Bouwmeester, 2016; Oburger and Schmidt, 2016; Badri and Vivanco, 2009). The chemical composition of these root exudates and their microbial breakdown products plays a crucial role in rhizosphere interactions between plants and beneficial soil microbes (Oburger and Schmidt, 2016). While developments in sequencing technology have revolutionised our ability to characterise rhizosphere microbial communities (van Dam and Bouwmeester, 2016; Oburger and Schmidt, 2016), the chemical diversity of the rhizosphere remains largely unexplored. This knowledge gap is mostly due to a lack of suitable methods to collect and comprehensively analyse metabolites from non-sterile rhizosphere soil.

It has been estimated that plants exude up to 21% of their carbon through their roots, where it is metabolised by the microbial community in the rhizosphere (Badri and Vivanco, 2009; Neumann et al., 2009; Hinsinger et al., 2006). Hence, plant roots drive multitrophic interactions in the rhizosphere via root exudation chemistry. Apart from serving as a primary carbon source for rhizosphere microbes. root exudates can influence rhizosphere interactions via selective biocidal and/or signalling activity (Berendsen et al., 2012). Both polar and apolar compounds have been reported to influence rhizosphere interactions. In addition to polar primary metabolites, such as organic and amino acids (Rudrappa et al., 2008; van Dam and Bouwmeester, 2016; Ziegler et al., 2015), more complex apolar secondary

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

81	metabolites, like flavonoids, coumarins and benzoxazinoids (Hassan and Mathesius,
82	2012; Neal et al., 2012; Szoboszlay et al., 2016; Ziegler et al., 2015), have been
83	reported to play an important role in influencing rhizosphere microbes. For instance,
84	the benzoxazinoid DIMBOA, which is exuded by roots of maize seedlings, has
85	chemotactic properties on Pseudomonas putida KT2440 (Neal et al., 2012), a
86	rhizobacterial strain that primes host defences against herbivores (Neal and Ton,
87	2013). Likewise, the release of malic acid from Arabidopsis thaliana (Arabidopsis)
88	roots attracts the Gram-positive rhizobacteria Bacillus subtilis, which in turn induces
89	disease resistance against Pseudomonas syringae pv. tomato (Rudrappa et al.,
90	2008). Furthermore, it was shown recently that plant-derived flavonoids have
91	profound impacts on the structure of soil bacterial communities (Szoboszlay et al.,
92	2016). Although these studies illustrate the importance of specific classes of root-
93	derived chemicals in rhizosphere interactions, untargeted metabolome studies of
94	root exudation products remain scarce, thereby limiting scope for discoveries of
95	important rhizosphere signals (Lakshmanan <i>et al.</i> , 2012; Neal <i>et al.</i> , 2012).

In addition to plant genotype and nutrition, various other factors can influence root exudation chemistry, such as plant developmental stage, temperature, humidity, and physiochemical soil properties (Zhang et al., 2016; Boyes et al., 2001; Badri and Vivanco, 2009; Uren, 2007). Environmental effects of root exudation chemistry has been studied mostly in (semi)sterile hydroponic systems (Song et al., 2012; Vranova et al., 2013; da Silva Lima et al., 2014). An important justification for the use of such soil-free growth conditions is that they allow for tight maintenance of environmental variables (Bowsher et al., 2016; Ziegler et al., 2015). In addition, hydroponic growth systems prevent sorption of metabolites to soil particles and microbial degradation. A recent study made a compelling case for the use of sterile root systems for studying

Rhizosphere metabolomics

root exudation chemistry by demonstrating that root exudates collected from non-sterile systems underestimated the quantity and diversity of carbon-containing metabolites due to microbial breakdown (Kuijken et al., 2014). Using hydroponically grown roots under sterile conditions, Strehmel et al. (2014) reported wide-ranging chemical diversity in root exudates of Arabidopsis, including mostly secondary metabolites such (deoxy)nucleosides, anabolites and catabolites of as glucosinolates, derivatives of phytohormones (e.g. SA, JA, oxylipins) and phenylpropanoids (e.g. coumarins, hydroxynammic acids). Nonetheless, there are disadvantages to hydroponically grown, sterile root systems. Hydroponically cultivated roots often develop root morphologies that differ from those of soil-grown roots, which likely reflects an underlying difference in physiology that may impact exudation chemistry (Sgherri et al., 2010; Tavakkoli et al., 2010). Furthermore, microbial degradation products of root exudates, rather than the root-exuded plant metabolites themselves, might act as potent rhizosphere signals. For instance, benzoxazinoids exuded from cereal roots can be converted into stable 2-aminophenoxazin-3-one, which has strong antimicrobial and allelopathic activities (Atwal et al., 1992; Macías et al., 2005). In addition, it is plausible that certain root exudation products stimulate the production of signalling and/or biocidal compounds by rhizosphere microbes (Cameron *et al.*, 2013). Therefore, ignoring the rhizosphere microbiome by studying sterile root systems limits the identification of novel semiochemicals that can shape microbial communities and their activities in the rhizosphere (Prithiviraj et al., 2007).

To date, various methods have been described to collect root exudates from non-sterile rhizosphere soil. These methods have been used mostly to determine total organic carbon and/or nitrogen content (Yin *et al.*, 2014; Phillips *et al.*, 2008), or

Pétriacq et al.

The Plant Journal

Rhizosphere metabolomics

to assay for biological response activity (Khan et al., 2002). Some of these studies revealed biological activities by amino acids, organic acids, and other extractable elements (Oburger et al., 2013; Shi et al., 2011; Haase et al., 2008; Bravin et al., 2010; Chaignon et al., 2009). However, the lack of comprehensive metabolic analyses of non-sterile rhizosphere soil limits our ability to establish relationships between microbial community structure and rhizosphere chemistry. Here, we describe a method for untargeted metabolite profiling from non-sterile rhizosphere soil with high microbial diversity. We have developed methods for extraction of polar and apolar metabolites that do not cause detectable levels of damage to root cells, nor affect viability of soil- and rhizosphere-inhabiting microbes. Using UPLC-Q-TOF mass spectrometry followed by uni- and multivariate statistical analyses, we demonstrate quantitative and qualitative differences in metabolite profiles between soil without plants and soil with plants, and putatively identify the rhizosphere metabolites that are enriched in extracts from Arabidopsis and maize soil. We discuss the potential of this technique for discovering semiochemicals that shape microbial community structure and activity in the rhizosphere.

RESULTS

151 Development of a plant cultivation system for extraction of rhizosphere 152 chemicals.

We used the model plant species *Arabidopsis thaliana* (Arabidopsis) to develop a plant cultivation system that is suitable for extraction of rhizosphere chemicals. Individual plants were grown for 5 weeks in 30-mL plastic tubes with drainage holes

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

in the bottom (Figure 1). Since Arabidopsis naturally grows in sandy soils (Lev-Yadun and Berleth, 2009), the tubes contained a homogenous 1:9 (v/v) mixture of fresh M3 compost and sand. Control tubes without plants were included for extraction of chemicals from control soil. All tubes were placed in individual trays, in order to prevent cross contamination of microbes and chemicals (Figure 1). Each tube was watered once per week (5 mL) from the base with a final watering three days before sampling (relative water content after sampling of $88 \pm 4.5\%$ per g). This watering regime provided reproducible levels of relative water content at the time of sampling. Under these conditions, flushing the tubes with 5 mL of water or extraction solution (see below) consistently yielded 4 - 4.5 mL collected volume after 1 min of incubation.

168 Microbial diversity of roots and rhizosphere soil and rhizosphere effect.

Root-derived chemicals mediate the rhizosphere effect (Bakker et al., 2013; Jones et al., 2009). To verify whether plants in our cultivation system showed a rhizosphere effect, we extracted DNA from control soil (without plants) and Arabidopsis roots plus adhering rhizosphere soil. Thus, the 'root plus rhizosphere' samples capture microbial diversity of the rhizosphere, the rhizoplane, and the root cortex. Paired-end 250 bp MiSeg Illumina sequencing of amplified partial 16S rRNA genes was used to profile microbial communities. A total of 2,280,754 raw sequences were obtained with an average of 285,094 per sample. Of these, 1,693,274 reads passed quality controls, chimera removal and singleton removal. Operational Taxonomic Units (OTUs) were generated by clustering at 97% similarity and cross-referenced against the Greengenes 13.8 database (DeSantis et al., 2006), yielding a total of 3,863 OTUs. Rarefaction analysis (Supplemental Figure S1) indicated sufficient

Page 9 of 86

Pétriacq et al.

The Plant Journal

Rhizosphere metabolomics

sequencing depth to capture the majority of OTUs. Dominant bacterial taxa at the phylum level were Actinobacteria (10.0% across all samples), and Proteobacteria (87.8%) comprised mostly of α -, β - and γ -*Proteobacteria* (17.1%, 44.8% and 25.3%, respectively), while at the family level we detected Burkholderiaceae (16.6% across all samples), Oxalobacteraceae (16.4%), Pseudomonadaceae (14.6%) and Xanthomonadaceae (10.3%; Figure S2). In addition, we detected ten families of the Rhizobiales (9.1%) including Bradyrhizobiaceae (3.4%) and Rhizobiaceae (1.6%). Many of these phyla and families have previously been reported to be associated with plant roots (Lundberg et al., 2012; Bulgarelli et al., 2015), illustrating that the soil substrate of our cultivation system harbours a microbiome that is typical for microbe-rich soil. To investigate whether the growth system produced a rhizosphere effect by plant roots, we analysed samples for statistically significant differences in OTUs between 'root plus rhizosphere' samples and soil samples. To minimize confounding effects from low-abundance OTUs, data were filtered to include only sequences that appeared i) > 5 times across 30% of the samples, and ii) 20 times or more across all samples, resulting in a final selection of 662 OTUs. Principal Coordinate Analysis (PCoA) using Unifrac distances revealed a difference in phylogenetic similarity (Figure 2a) between the 'root plus rhizosphere' samples and control soil samples, which was confirmed by PERMANOVA analysis ($F_{1.6}$, P = 0.023). A total of 178 OTUs were found to differ significantly in relative abundance between 'root plus rhizosphere' and control soil samples, including an increased abundance of 17 Rhizobiales OTUs in root samples (e.g. Rhizobiaceae, Methylobacteriaceae, Hyphomicrobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae; Figure 2b). While the mean Shannon diversity index did not differ between soil and 'root plus rhizosphere' samples (3.58; SD = 0.001 and 3.22; SD = 0.001, respectively;

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

Student's *t*-test t(3) = 0.92, P = 0.39), mean OTU richness of 'root plus rhizosphere' samples (717, SD = 2.1) was significantly lower than that of control soil samples (1177, SD = 2.3; Student's *t*-test t(3) = 3.51, P = 0.04; Figure S1), showing an influence of roots on the microbial communities. Hence, the presence of plant roots in our experimental system produces a statistically significant rhizosphere effect.

Selection of extraction solutions that do not cause detectable damage to root and microbial cells.

Plant-derived metabolites range from polar/hydrophilic (e.g. organic and amino nucleotides) to lipids, acids. apolar/hydrophobic (e.g. phenylpropanoids). Consequently, comprehensive metabolic profiling of rhizosphere soil requires extraction solutions of different polarities. However, the extraction solution should not damage cells from roots or soil microbes, which could contaminate the extract with cellular metabolites (see Figure S3 for a conceptual model). Although water-based solutions without organic solvents are unlikely to cause cellular damage, they are unsuitable for extracting apolar (hydrophobic) metabolites. Conversely, solutions containing organic solvents extract apolar compounds, but risk cell damage by destabilization of membrane lipids (Patra et al., 2006). With a polarity index of 5.1, methanol (MeOH) is capable of extracting polar and apolar metabolites (Figure S3). Accordingly, we selected MeOH as the organic solvent in our extraction solutions.

To test whether exposure to the MeOH-containing extraction solutions has a damaging effect on plant roots, we incubated intact roots of Arabidopsis for 1 min in acidified extraction solutions with different MeOH concentrations (0, 50 and 95% (v/v) MeOH + 0.05 % (v/v) formic acid). As a negative control, tissues were incubated for 1 min in water. To minimize root damage prior to treatment, roots were

Page 11 of 86

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

231	collected from agar-grown plants. As a positive control for cell damage, tissues were
232	wounded before incubation. After incubation, tissues were transferred to sterile water
233	for quantification of electrolytes leakage, which is a sensitive method to quantify cell
234	damage in Arabidopsis (Pétriacq et al., 2016a). As shown in Figure 3a, none of the
235	extraction solutions increased the level of electrolytes leakage in comparison to
236	water-incubated roots (Figure 3a). Hence, 1-min exposure to the MeOH-containing
237	solutions does not induce ions leakage from root cells of Arabidopsis. To investigate
238	further potentially damaging effects of the MeOH-containing solutions on root cell
239	integrity, we carried out microscopy studies. Based on the assumption that cell
240	damage by MeOH would permeabilise root cells and cause denaturation of
241	cytoplasmic proteins, we used fluorescence of a C-terminal fusion between the
242	cytoplasmic aspartyl-tRNA synthetase IBI1 and YFP as a marker for root cell
243	integrity (Luna et al., 2014). Roots of two-week-old 35S::IBI1:YFP plants were
244	carefully removed from MS agar medium, incubated for 1 min in extraction solutions
245	or water (negative control), and analysed for YFP fluorescence (Figure S4). As a
246	positive control for cell damage, 35S::IBI1:YFP roots were incubated for 15 min in
247	100% MeOH. YFP fluorescence in roots incubated in acidified 0% MeOH and 50%
248	MeOH solutions was similar to roots incubated for 1 min in water (negative control).
249	Some roots incubated in acidified 95% MeOH showed a weaker YFP signal,
250	although this reduction was less severe than the near complete loss of YFP
251	fluorescence in roots after incubation for 15 min in 100% MeOH (positive control).
252	Thus, 1-min exposures to the 0% and 50% MeOH solutions does not have
253	detectable effects on root cell integrity, which is in line with our conductivity
254	measurements (Figure 3).

Rhizosphere metabolomics

To investigate whether the extraction solutions affect soil microbes, control and Arabidopsis soils were drenched for 1 min with the extraction solutions, and microbial viability was tested by dilution plating onto (non-)selective LB agar plates. Viability of culturable soil bacteria was quantified by colony counting on non-selective plates. To test impacts on specific rhizosphere-colonizing bacterial strains, the Gram-negative Pseudomonas (P.) simiae WCS417r (formally known as P. fluorescens WCS417r; Berendsen et al., 2012) and the Gram-positive Bacillus (B.) subtilis 168 (Yi et al., 2016) were introduced into separate tubes two days prior to extraction solution treatment, and plated onto selective agar plates after application of extraction solution. Colony forming units (CFU) from solution-treated soils were compared to water-treated soils (1 min; negative control), as well as soils that had been treated for 45 min with 95% MeOH (positive control for microbial cell damage). While the 45-min incubation with 95% MeOH reduced bacterial counts by 10- to 100fold, none of the acidified MeOH solutions had a statistically significant effect on CFU counts from either soil type in comparison to water-treated soil (Figures 3b and 3c). In summary, our control experiments for cell damage show that 1-min

extraction with the 0% and 50% MeOH solutions does not have detectable impacts on root cell integrity and viability of soil bacteria. However, direct exposure of roots to acidified 95% MeOH solution does have a minor effect on root cell integrity, as evidenced by the faint loss of YFP fluorescence (Figure S4). Accordingly, we cannot exclude the possibility that metabolic profiles obtained with the 95 % MeOH solution are contaminated with cellular metabolites from damaged root cells.

Untargeted metabolic profiling of control and Arabidopsis soil by UPLC-Q-TOF
 mass spectrometry.

Page 13 of 86

Pétriacq et al.

The Plant Journal

Soil samples were extracted with the three acidified solutions (0.05% formic acid,

Rhizosphere metabolomics

v/v), containing increasing MeOH concentrations (0, 50 and 95% MeOH). Chemical profiles were obtained by untargeted UPLC-Q-TOF mass spectrometry (MS), using MS^E profiling technology (see Supplemental Methods), which enables simultaneous acquisition of both intact parent ions and fragmented daughter ions (Glauser et al., 2013; Gamir et al., 2014a, 2014b; Planchamp et al., 2014; Pétriacg et al., 2016a, 2016b). Prior to statistical analysis, chemical profiles of ion intensity were aligned and integrated using XCMS software (Smith et al., 2006; Pétriacg et al., 2016a, 2016b). Similarities and differences in ion intensities from both positive (ESI⁺, 17.518) cations) and negative ionization modes (ESI, 19,488 anions) were first examined by multivariate data analysis, using MetaboAnalyst (v. 3.0) software (Xia et al., 2015). Unsupervised three-dimensional principal component analysis (3D-PCA) separated samples from both soil types that had been extracted with the same solution (Figure 4a), indicating global metabolic differences between control and Arabidopsis soil. These differences were reproducible between three independent experiments (Figure S5). Extractions with the 95% MeOH solution resulted in higher levels of variation than extractions with the 50% and 0% MeOH solutions (Figure 4a and Figure S5). Cluster analysis (Pearson's correlation) revealed complete segregation between control soil samples and Arabidopsis soil samples analysed in positive ionization mode (ESI⁺), while samples analysed in negative ionization mode (ESI⁻) showed partial segregation between both these soil types. Although samples from the same extraction solution clustered relatively closely within the dendrogram, extracts from the 95% MeOH solution showed more variation than the other solutions (Figure 4b). Finally, we used supervised partial least square discriminant analysis (PLS-DA) to compare metabolite profiles between samples from control soil

Rhizosphere metabolomics

and Arabidopsis soil (Figure 4c). Comprehensive analysis of all samples revealed clear separation between all different soil/solution combinations, in both the ESI⁺ and ESI⁻ data. The corresponding PLS-DA models displayed high levels of correlation ($R^2 ESI^+ = 0.998$; $R^2 ESI^- = 0.951$) and predictability ($Q^2 ESI^+ = 0.619$; $Q^2 ESI^- =$ 0.657). Binary comparisons between control and Arabidopsis soil for each extraction solution confirmed these differences, each with high levels of correlation ($R^2 > 0.94$) and predictability ($Q^2 > 0.59$) of the PLS-DA models (Figure S6). However, as was also clear from 3D-PCA and Pearson's correlation analyses, samples extracted with the 95% MeOH solution were more variable than extracts obtained with the 0% and 50% MeOH solutions (Figures 4a-c). The enhanced variation between samples extracted with the 95% MeOH solution is consistent with our finding that direct exposure of roots to 95% MeOH solution causes minor cell damage (Figure S4). Together, our results show consistent differences in polar and apolar metabolite composition between control soil and Arabidopsis soil, indicating a global influence of roots on the chemical composition of the soil in our cultivation system.

Quantitative differences in metabolites between extractions from rhizosphere and control soil.

Quantification of the total number of detected ions (*m/z* values) yielded marginally higher numbers from samples of control soil compared to that of Arabidopsis soil (Figure S7a). A substantial fraction could be detected in both soil types (66.9%, 64.1% and 49.4% for the 0%, 50% and 95% MeOH solutions, respectively; Figure S7a), indicating a large number of metabolites that were present in both rhizosphere and control soil. Ions that were uniquely present in one or more sample from Arabidopsis soil were most abundant in extractions with the 95% MeOH solution

Pétriacq et al.

The Plant Journal

(6,448), followed by the 50% MeOH solution (4,362) and the 0% MeOH solution (3,991; Figure S7a). To select for ions that were statistically over- or underrepresented in Arabidopsis soil, we constructed volcano plots that expressed statistical significance of each ion (m/z value) against fold-change between both soil types (Figure 5a). Using a statistical threshold of P < 0.01 (Welch's *t*-test) and a cut-off value of > 2 fold-change (Log2 > 1), numbers of ions enriched in control soil were generally higher than those enriched in Arabidopsis soil (Figure 5a). Furthermore, there was relatively little overlap in differentially abundant ions between extraction solutions (P < 0.01, Welch's t-test, Figures 5b and S7). This pattern was equally clear for ions that were specifically enriched in either soil type (P < 0.01, Welch's t-test, >2 fold-change; Figures 5b and S7b, middle and right), illustrating the fact that the acidified solutions extracted different classes of metabolites. The 50% MeOH solution yielded the highest number of rhizosphere-enriched ions (178), followed by the 0% MeOH solution (115) and 95% MeOH solution (81). Since the 50% MeOH solution also yielded relatively low levels of variability between replicate samples (Figure 4 and Figure S5), our results suggest that this solution is most suitable for extraction of rhizosphere-enriched metabolites.

348 Composition of rhizosphere- and control soil-enriched metabolites.

To study which metabolite classes drive the global differences between rhizosphere and control soil (Figure 4 and Figure 5), we pooled the top 20-ranking ions from each volcano plot which were ranked by fold-change and statistically significant difference between control and Arabidopsis soil, resulting in a total of 120 metabolic markers for each soil type. To enhance statistical stringency, ions were subsequently filtered by statistical significance between all soil/solution combinations (ANOVA; *P* < 0.01),

Rhizosphere metabolomics

using a Benjamini-Hochberg correction for false-discovery rate (FDR). The final selection yielded a total of 76 rhizosphere-enriched ions and 75 control soil-enriched ions. MarVis software (Kaever et al., 2012) was used to correct for adducts and/or C isotopes (tolerance: m/z = 0.1 Da and RT = 10 s), after which the predicted masses were used for putative identification (Table S1), using METLIN, PubChem, MassBank, Lipid Bank, ChemSpider, Kegg, AraCyc and MetaCyc databases (Kaever et al., 2009; Gamir et al., 2014a, 2014b; Pastor et al., 2014; Kaever et al., 2012; Pétriacg et al., 2016a, 2016b). To obtain a global profile of soil- and rhizosphere-enriched chemistry, putative compounds were assigned to different metabolite classes (Figure 6). Putative chemicals that unlikely accumulate as natural products in (rhizosphere) soil, such as synthetic drugs or mammalian hormones, were excluded from these profiles (Table S1). In comparison to control soil, Arabidopsis soil was enriched with ions that putatively annotate to flavonoids (8 vs 2%), lipids (33 vs 6%) and alkaloids (5% in Arabidopsis soil only; Figures 6 and S8; Table S1), which supports the notion that rhizosphere soil is enriched with plant-derived metabolites. The global composition of control soil showed a higher fraction of metabolites that could not be annotated (Figures 6 and S8; Table S1), likely due to an under-representation of soil metabolites in publically available databases.

Applicability of the method to maize in agricultural soil.

Having established that our method is suitable for detecting rhizosphere-enriched metabolites from Arabidopsis, we investigated whether the method could be applied to profile rhizosphere metabolites from a crop species (maize; *Zea mays*) in agricultural soil. To this end, the cultivation system was up-scaled to 50-mL tubes that were filled with a mixture of agricultural soil from arable farmland (Spen farm,

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

Leeds, UK) and perlite (75:25, v/v). The perlite was added to improve drainage of the soil, which improved plant growth and ensured that sufficient solution was collected from the base of the tubes within 1 min of extraction solution application. Maize plants were grown for 17 days, and rhizosphere chemistry was extracted using the 50% MeOH solution (+ formic acid 0.05%, v/v). Further validation experiments showed that 1-min exposure of maize roots to this solution did not lead to increased electrolytes leakage (Figure 7a). Comparative analysis of metabolites by UPLC-Q-TOF identified a total of 6,071 cations (ESI⁺) and 9,006 anions (ESI⁻). 3D-PCA showed complete separation between samples from control (red) and maize (green) soil (Figure 7b). Quantitative differences were determined by volcano plots (Welch's *t*-test, P < 0.01: fold-change > 2), revealing 287 cations (ESI⁺) and 197 anions (ESI⁻) that were statistically enriched in maize soil (Figure 7c). Cross-referencing the 100 most significant ions (top 50 anions + top 50 cations) against public databases indicated higher levels of chemical diversity in maize soil samples compared to control soil samples. Most metabolic markers could be putatively identified (Table S2) and annotated to different metabolite classes (Figure 7d). As described for the profiling of the Arabidopsis rhizosphere (Figure 6), these final profiles did not include putative compounds that unlikely accumulate in (rhizosphere) soil, such as synthetic drugs (Table S2). Strikingly, a relatively large fraction of maize rhizosphere-enriched ions could be annotated to flavonoids (28%) and benzoxazinoids (21%), which mediate below-ground interactions (Neal and Ton, 2013; Neal et al., 2012; Robert et al., 2012) For instance, HBOA, DIBOA and HMBOA, displayed strong rhizosphere enrichment in maize soil samples (Figure S8), and are known to be produced by maize roots (Marti et al., 2013). Thus, our profiling method is sufficiently robust and

404 sensitive to profile plant-derived rhizosphere chemicals from a crop species in405 agricultural soil.

Profiling chemistry in distal rhizosphere fractions.

The rhizosphere was defined by Lorenz Hiltner in 1904 as 'the soil compartment influenced by the root' (Smalla et al., 2006). However, many rhizosphere studies focus exclusively on soil that is closely associated with plant roots (after removal of loosely associated soil), which may not encompass the total rhizosphere as more distal and loosely associated soil could still be influenced by root-derived chemistry. To investigate whether our profiling method detects chemical influences beyond soil that is closely associated with roots, we used an alternative growth system that separated roots from distal soil (Figure S9). Maize plants were grown in small, fine mesh bags within larger 150-mL tubes containing soil (see Supplemental Methods), which prevented outward root growth, yet allowed for passage of root-derived chemicals and microbes into the distal soil. Similar plant-free tubes were constructed as no plant controls. After 24 days of growth, mesh bags were carefully removed, after which metabolites were extracted from the remaining distal soil that surrounded the mesh bags, using the 50% MeOH extraction solution. As a control for whole soil fractions, metabolites from empty and maize-containing tubes were extracted before removing the mesh bag from the tube, as described earlier. Thus, the experimental design allowed comparison between four soil fractions: 1) distal soil surrounding mesh bags without roots, 2) distal soil surrounding mesh bags with maize roots, 3) whole soil from tubes with mesh bags without roots and 4) whole soil from tubes with mesh bags with maize roots. Extracts were analysed by UPLC-Q-TOF in ESI⁻ (26,011 anions) and subjected to unsupervised PCA (Figure S9b). Comparison of

Page 19 of 86

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

whole soil fractions confirmed a clear separation between plant-free and maize soil samples, illustrating the chemical rhizosphere effect of maize. Although less pronounced than the whole soil fractions, PCA of the distal soil fractions still revealed separate clustering between plant-free and maize soil (Figure S9b), indicating that the chemical influence of the rhizosphere extended beyond soil closely associated with roots. To verify this distant rhizosphere effect, we quantified levels of DIMBOA, which acts as a relatively stable rhizosphere semiochemical influencing behaviour of both rhizobacteria and arthropods (Neal et al., 2012; Robert et al., 2012). In comparison to both plant-free soil fractions, statistically higher quantities of DIMBOA were detected in both whole maize soil and distal maize soil (Figure S9c). Hence, DIMBOA acts as a mobile long-range rhizosphere signal that extends beyond soil that is closely associated with roots. Considering that maize roots contain high quantities of DIMBOA (Robert et al., 2012), and that the distal soil was separated from the roots prior to chemical extraction with the 50% MeOH solution, this result also confirms that the 50% MeOH extraction solution does not have a damaging effect on maize roots, as exemplified by similar DIMBOA levels in whole maize soil and distal maize soil (Figure S9c).

DISCUSSION

450 Rhizosphere chemistry is a complex mixture of root exudation chemicals, their 451 microbial breakdown products, and microbial breakdown products of soil-specific 452 chemicals. While it is known that microbial diversity in the rhizosphere can influence 453 plant growth and health (Berendsen *et al.*, 2012), the chemical signals mediating

Rhizosphere metabolomics

these interactions remain poorly understood. The majority of root exudation studies are based on hydroponic and/or sterile growth systems (Kuijken et al., 2014; Khorassani et al., 2011; Bowsher et al., 2016). Although sterile growth systems are appropriate for exact quantification of root-exuded plant chemicals (Kuijken et al., 2014), these systems do not consider the importance of rhizosphere signals that are of microbial origin, such as microbial breakdown products of root exudates, or metabolites that are specifically produced by rhizosphere-inhabiting microbes. Consequently, linking rhizosphere chemistry to microbial communities and/or activities remains problematic when the biochemical diversity of the non-sterile rhizosphere is not considered (Oburger and Schmidt, 2016). Furthermore, although root exudation studies are increasingly relying on sensitive analytical methods (van Dam and Bouwmeester, 2016; Khorassani et al., 2011; Ziegler et al., 2015), the majority of these studies employs targeted analyses of specific compounds (e.g. organic and amino acids, coumarins), which do not address the biochemical diversity of rhizosphere soil. Recent advances in liquid chromatography, mass spectrometry, and uni- and multivariate data analysis have made it possible to conduct untargeted metabolic profiling of complex metabolite mixtures, such as root exudates and soil extracts (van Dam and Bouwmeester, 2016; Khorassani et al., 2011; Swenson et al., 2015; Ziegler et al., 2015; Strehmel et al., 2014). In this study, we employed untargeted UPLC-Q-TOF analysis of soil extracts, followed by uni- and multivariate data reduction to separate rhizosphere-specific chemistry from common soil chemistry. We show that this method is suitable to profile in situ rhizosphere chemistry from different plant species and soil types.

477 The microbial rhizosphere effect is driven by root exudation chemistry (Jones *et al.*, 2009). Accordingly, we verified whether our cultivation system supported the

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

generation of a difference in microbial communities between control soil samples (without plant roots) and root samples plus adhering rhizosphere soil, using 16S rRNA gene sequencing. This analysis identified a total number of 3,863 OTUs, which by rarefaction analysis appeared to be sufficient to cover the majority of dominant OTUs (Figure S1). Many of the taxa detected in our samples (e.g. Oxalobacteraceae, Pseudomonadaceae, Xanthomonadaceae and the Rhizobiaceae) are commonly associated with soil and/or plant roots (Lundberg et al., 2012). Comparative analysis identified a range of OTUs with differential relative abundance between control soil and 'root plus rhizosphere' samples (Figure 2), which provided evidence for a rhizosphere effect in our experimental growth system. Many of the corresponding taxa have been linked to rhizosphere effects, such as an enhanced relative abundance of Oxalobacteraceae (Figure 2b, Figure S2; Lundberg et al., 2012; Bulgarelli et al., 2015), as well as the Rhizobiales, which are commonly associated with plant roots (Hao et al., 2016).

Our cultivation system was designed for *in situ* extraction of chemicals from biologically complex non-sterile rhizosphere soils. The soil matrix for the Arabidopsis experiments consisted of 9:1 (v/v) mixture of sand and compost, which is comparable to the sandy soil types of naturally occurring Arabidopsis accessions (Lev-Yadun and Berleth, 2009). This matrix also allowed relatively short collection times of the extracts (1 min), which was sufficient to recover 90% of the volume applied and prevent root damage due to extended exposure to MeOH in the extraction solution. The soil matrix for the maize experiments contained agricultural soil from an arable farm field, which was supplemented with 25% (v/v) autoclaved perlite to prevent compaction and allowed sufficient elution of metabolites over the 1-min extraction period. Using this system, we detected quantitative and qualitative

Rhizosphere metabolomics

differences in chemistry between extracts from control and maize soil (Figure 7),
demonstrating that the method was applicable for profiling of rhizosphere chemistry
from a crop species in agricultural soil.

A major challenge for *in situ* profiling of rhizosphere chemistry is to prevent damage of root cells and microbes during the extraction procedure that could otherwise contaminate the extract with metabolites that are not exuded from intact roots. While water-based extraction solutions are unlikely to cause cellular damage, they are less suitable for extraction of apolar metabolites. Conversely, solutions containing organic solvents extract apolar metabolites, but can damage cell membranes. Due to limited understanding of root exudation chemistry in natural soil types, it remains difficult to distinguish between naturally exuded metabolites and metabolites leaking from damaged root tissues or lysed microbial cells. Therefore, we carried out a range of experiments to investigate whether the MeOH-containing extraction solutions caused cell damage: (i) quantification of root electrolytes leakage (Figure 3a), (*ii*) epi-fluorescence microscopy to assess root cell integrity (Figure S4), (iii) dilution plating to assess viability of soil- and rhizosphere-colonising bacteria after incubation of the soil in extraction solutions (Figures 3b and 3c), and iv) detection of plant-derived chemicals in root-free soil fractions (Figure S9). Firstly, exposure of both Arabidopsis and maize roots to the MeOH-containing solutions did not increase electrolytes leakage for the duration of the extraction procedure (1 min: Figures 3 and 7). Secondly, microscopic analysis of root cells from YFP-expressing Arabidopsis roots did not reveal loss of cell integrity after 1-min exposure to 0% and 50% MeOH-containing solutions (Figure S4). However, this assay did reveal a weak impact by the 95% MeOH solution, indicating that extraction of rhizosphere chemistry with this solution could affect root cell integrity. Thirdly, extraction of

SUBMITTED MANUSCRIPT

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

control and Arabidopsis soil with the MeOH-containing extraction solutions did not reduce viability of culturable soil microbes, nor did it affect viability of the Gram-negative rhizobacterial strain P. simiae WCS417r and the Gram-positive rhizobacterial strain B. subtilis 168 (Figures 3b and 3c). Finally, using the 50% MeOH extraction solution and a compartmentalised growth system that separated maize roots from peripheral rhizosphere soil, we showed that extraction of the peripheral soil after removal of maize roots yielded similar DIMBOA quantities as extraction of soil containing maize roots (Figure S9c). Since maize roots accumulate high quantities of DIMBOA (Robert et al., 2012), this result further confirms that the 50% MeOH extraction solution does not damage maize roots in the soil. Accordingly, we conclude that 1-min exposure to the 0% or 50% MeOH extraction solution does not cause detectable levels of cell damage to roots and soil microbes that could contaminate the chemical profiles from the soils with intracellular metabolites.

Multivariate data analysis and clustering revealed that the variability between replicate extractions was lower for the 0% and 50% MeOH extraction solutions compared to the 95% MeOH solution (Figure 4). This is consistent with our finding that direct exposure to this solution sometimes reduced YFP fluorescence in transgenic Arabidopsis roots (Figure S4). Data projection in volcano plots showed that extraction with the 50% MeOH solution yielded the highest number of rhizosphere-enriched ions in comparison to other extraction solutions (Figure 5a). Hence, the 50% MeOH extraction solution performs best in terms of variability between extractions and total numbers of differentially detected ions. Quantitative analysis of MS profiles revealed slightly lower numbers of rhizosphere-enriched ions than control soil-enriched ions, which was apparent for both Arabidopsis (Figure 5 and Figure S7) and maize (Figure 7). It is possible that this difference is due to the

Rhizosphere metabolomics

rhizosphere effect, which reduces bacterial richness (Figure S1 and Figure 2), resulting in lower biochemical diversity in the rhizosphere (Prithiviraj *et al.*, 2007).

The sets of ions enriched in control and plant-containing soil differed substantially in composition (Figures 6 and 7). Interestingly, the number of ions annotated to putative metabolites from publicly available databases was higher for rhizosphere selection (Tables S1 and S2). We attribute this difference to the fact that plant-containing soil is enriched with plant-derived metabolites, which are better represented in publicly available databases than soil-specific metabolites (Strehmel et al., 2014; Swenson et al., 2015). Indeed, the selection of putative rhizosphere metabolites from Arabidopsis contained a relatively high fraction of flavonoids, lipids, and other amino acid-derived secondary metabolites, such as alkaloids and phenylpropanoids (Figure 6, Table S1), whereas the set of putative rhizosphere metabolites from maize included relatively large fractions of flavonoids and benzoxazinoids (Figure 7, Table S2). It should be noted, however, that the analytical method used in this study is limited by the putative identification of single ions. Unless the identity of a single metabolite is confirmed by subsequent targeted analyses, such as specific chromatographic retention time, fragmentation or NMR patterns, its annotation remains putative (*i.e.* inconclusive). However, the novelty of our method does not come from the applied mass spectrometry detection method. but the combined use of the experimental design, extraction methods, mass spectrometry profiling and statistical techniques to deconstruct rhizosphere chemistry. Once a wider profile of rhizosphere chemistry has been established, targeted techniques can be used to confirm metabolite identities. Furthermore, where multiple putative metabolites annotate to the same metabolite class, a more reliable conclusion can be drawn about the involvement of this metabolite class. In

Page 25 of 86

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

our case, multiple rhizosphere ions could be annotated to the same plant-metabolic pathways, suggesting that the overall rhizosphere profile is influenced by these plant metabolite classes. In support of this, previous studies have reported the presence of the same secondary compounds in plant root exudates (Hassan and Mathesius, 2012; Oburger et al., 2013; Szoboszlay et al., 2016; Oburger and Schmidt, 2016). Moreover, benzoxazinoids, such as DIMBOA, have previously been implicated to act as belowground semiochemicals during maize-biotic interactions (Neal et al., 2012; Robert et al., 2012; Marti et al., 2013). Hence, our method provides a new tool to explore rhizosphere semiochemicals for different plant species and soils.

Relatively few rhizosphere-enriched ions could be annotated to primary plant metabolites, such as proteinogenic amino acids or organic acids (Figures 6 and 7). Although these compounds are exuded in high quantities by roots (Rudrappa et al., 2008; van Dam and Bouwmeester, 2016; Ziegler et al., 2015), the microbial activity in the rhizosphere will quickly metabolize them, and the C18-UPLC separation is not optimal for separation of (often very polar) primary metabolites. Above all, we stress that our method is not suitable for quantitative analysis of primary and secondary root exudates, for which sterile root cultivation systems are more appropriate (Kuijken et al., 2014; Strehmel et al., 2014). Our method should only be used for profiling, identification and/or quantification of rhizosphere chemicals. These compounds can be microbial breakdown products of secondary metabolites in root exudates, but could equally well be synthesised de novo by rhizosphere-specific bacterial and fungal microbes. Using the experimental pipeline detailed in this paper, stable isotope labelling of plant root exudates via leaf exposure to ¹³CO₂ can potentially differentiate between these classes of rhizosphere metabolites, where plant-derived breakdown products will likely retain higher levels of ¹³C than *de novo*

Rhizosphere metabolomics

synthesised microbial products. Furthermore, as is illustrated by our study, the method allows for simultaneous assessment of rhizosphere chemistry and microbial composition, which can be used for genetic strategies that aim to establish a causal relationship between plant genotype, rhizosphere chemistry and microbial composition (Oburger and Schmidt, 2016). Such an approach would also advance studies on the effects of above-ground stimuli (such as light, atmospheric CO_2 and above-ground (a)biotic stresses) on below-ground plant-microbe interactions.

In summary, our study presents a straightforward method to obtain profiles of rhizosphere chemistry in non-sterile rhizosphere soil. The method is applicable to both model systems and soil-grown crops in agricultural soil. Considering that the microbial interactions in the rhizosphere can have both beneficial and detrimental effects on plant performance (Berendsen *et al.*, 2012; Cameron *et al.*, 2013), our method entails a powerful tool to advance rhizosphere biology and to decipher the chemistry driving plant-microbe interaction in complex non-sterile soils.

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

EXPERIMENTAL PROCEDURES

- - 620 Chemicals and reagents.

All chemicals and solvents used for metabolomics were of mass spectrometry grade(Sigma-Aldrich, Germany). Other solvents were of analytical grade.

624 Experimental set-up of growth system.

Collection tubes for the Arabidopsis experiments were constructed by melting 7 mm holes in the base of 30-mL plastic tubes (Sterilin 128A, ThermoScientific, UK), using a soldering iron (see Figure 1). The drainage hole was covered with 4-cm² pieces of Millipore miracloth (pore size of 22-25 µm, https://uk.vwr.com) to avoid loss of soil and to prevent outgrowth by roots. Tubes were filled with \sim 45 g soil matrix, consisting of a homogenous 9:1 (v/v) mixture of sand (silica CH52) and dry compost (Levington M3), which is comparable to sandy soil types of naturally occurring Arabidopsis thaliana (Arabidopsis) accessions (Lev-Yadun and Berleth, 2009). To prevent cross contamination of rhizosphere microbes and chemicals between samples, each collection tube was placed onto an individual petri-dish (Nunclon™ Delta, 8.8 cm² ThermoScientific, UK) (Figure 1). Collection tubes were wrapped in aluminium foil to limit algal growth in the soil matrix. Seeds of Arabidopsis accession Columbia (Col-0) were stratified for two days in the dark in autoclaved water at 4 °C. Three to four seeds were pipetted onto individual tubes and placed into a growth cabinet (Fitotron, SANYO, UK) with the following growth conditions: 8.5/15.5 h light/dark at 21/19 °C with an average of 120 µmol m⁻² s⁻¹ photons at the top of the collection tubes and a relative humidity of 70%. Four days later, seedlings were removed to leave one seedling per pot, which was grown for 5 weeks until sampling.

Rhizosphere metabolomics

All pots were watered twice per week by applying 5 mL of autoclaved distilled water to the petri-dishes, using a 5-mL pipette (Starlab, UK). The final watering date was set at three days before sampling, which resulted in consistent soil water contents at the time of sampling. Relative water content (RWC) was determined by the ratio of soil weight (W) minus soil dry weight (DW), divided by water-saturated soil weight (SW) minus soil dry weight:

$$649 \qquad RWC = \frac{W - DW}{SW - DW}$$

The applied watering regime provided reproducible RWC values at the time of sampling (88 \pm 4.5%). Although the RWC during the cultivation of plants was frequently lower, the relatively high RWC value at the time of sampling allowed for constant and relatively high recovery volumes (4 - 4.5 mL) from the soil matrix.

Collection tubes for the maize experiments were constructed by melting 7 mm holes in the base of 50-mL plastic tubes. Tubes were fitted with miracloth at the bottom and filled with a water-saturated mixture of agricultural soil:autoclaved perlite (75:25; v/v), in order to allow for sufficient collection volume 1 min after application of extraction solutions (see below). Soil was collected from an arable field (Spen farm; Leeds, UK), air-dried, sieved to a maximum particle size of 4.75 mm, and homogenised using a mixer. Maize seeds (Zea mays variety W22) were surface sterilised for 3 h by placing them in petri-dishes in an airtight container with 100 mL of bleach, to which 5 mL of concentrated HCl had been added. Seeds were imbibed overnight in autoclaved, sterile water before placing on petri-dishes containing sterile, damp filter paper in the dark at 23 °C for two days. Germinated seeds were planted in filled collection tubes, 1.5 cm from the soil surface. Collection tubes were wrapped in foil, covered with black plastic beads, and placed in a growth chamber with the following conditions: 12/12 h light/dark at 25/20 °C. The additional maize

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

experiment to profile distal rhizosphere chemistry is described in the SupplementalMethods.

Profiling of root associated microbial communities.

Details about DNA extraction, 16S rRNA gene sequencing and analysis of rootassociated prokaryotic operational taxonomic units (OTUs) are presented in the Supplemental Methods.

676 Metabolite extraction from control and Arabidopsis/maize soil.

Plant soil samples were collected from tubes containing one 5-week-old Arabidopsis plant, or one 17-day-old maize plant. Plant soil chemistry was analysed from five replicated samples, whereas control soil chemistry was analysed from three replicated samples. All samples were all collected at the same time. For the Arabidopsis system, cold extraction solution (5 mL) containing 0%, 50% or 95% methanol (v/v) with 0.05% formic acid (v/v) was applied to the top of the tubes. After 1 min, 4 - 4.5 mL were collected from the drainage hole in 5-mL centrifuge tubes (Starlab, UK). For the maize system, 15 mL of the 50% methanol solution (0.05 % formic acid, v/v) was applied and flushed through the soil by applying pressure to the top of the pot, using a modified lid containing a syringe. After 1 min, 10 mL were collected in centrifuge tubes. For both cultivation systems, extracts were centrifuged to pellet soil residues (5 min, 3,500 g), after which 4 mL of supernatant were transferred into a new centrifuge tube and flash-frozen in liquid nitrogen, freeze-dried for 48 hours until complete dryness (Modulyo benchtop freeze dryer, Edwards, UK), and stored at - 80 °C. Dried aliquots were re-suspended in 100 µL of methanol: water: formic acid (50: 49.9: 0.1, v/v), sonicated at 4 °C for 20 min, vortexed and

Rhizosphere metabolomics

693 centrifuged (15 min, 14,000 *g*, 4 °C) to remove potential particles that could block the 694 UPLC column. Final supernatants (80 μ L) were transferred into glass vials containing 695 a glass insert prior to UPLC-Q-TOF analysis.

697 Assessment of cell damage by extraction solutions

Impacts of acidified extraction solutions on integrity of root cells were determined by conductivity measurement from electrolytes leakage and epi-fluorescence microscopy of transgenic YFP-expressing roots, as detailed in the Supplemental Methods. Impacts of extraction solutions on culturable soil bacteria and introduced soil- and rhizosphere-colonising bacteria were determined by dilution plating, as described in the Supplemental Methods.

705 UPLC-Q-TOF analysis of soil chemistry

Details of the UPLC-Q-TOF analysis, including targeted detection of DIMBOA, and uni- and multivariate data analyses to deconstruct rhizosphere chemistry are presented in Supplemental Methods.

711 ACKNOWLEDGEMENTS

The authors would like to thank Bob Turner for advice and feedback on assessing bacterial viability, and Choong-Min Ryu for providing the *B. subtilis* 168 strain. The research was supported by a consolidator grant from the European Research Council (ERC; no. 309944 *"Prime-A-Plant"*), a Research Leadership Award from the Leverhulme Trust (no. RL-2012-042), and an ERA-CAPS BBSRC grant

The Plant Journal

1	<i>Pétriacq</i> et a	l.				Rł	nizosphere r	metabolon	nics	
2 3 71	8 (BB/L0279	25/1, " <i>BENZ</i>	EX") to	Jurriaan	Ton	and	Stephen	Rolfe.	The	Plant
4 5 71	9 Production	and Protectic	on (P3) ce	entre of the	e Univ	ersity	of Sheffie	eld supp	orted	Pierre
7 7 8 72	0 Pétriacq's	work. The autl	nors decl	are no cor	flict of	inter	est.			
9 10 72	1									
11 12 72	2 SHORT LE	EGENDS FOR	SUPPO	RTING IN	FORM	ΑΤΙΟ	N			
13 14 72	3									
16 72 17 72	4 Additional	Supporting Inf	ormation	may be fo	ound in	the c	online vers	sion of th	iis arti	cle.
18 19 72	5 Suppleme	ntal Figure S	1. Rarefa	action curv	ves of	16S I	rRNA Ope	erational	Тахо	nomic
20 21 72	6 Units (OTL	Js).								
22 23 72	7 Suppleme	ntal Figure S	2. Relativ	ve abundai	nce of	bacte	erial taxa.			
24 25 72 26	8 Suppleme	ntal Figure S	3. Solver	nt polarity a	and ex	tractio	on of rhizo	sphere of	chemi	stry.
27 28 72	9 Suppleme	ntal Figure S	4. Epi-flu	orescence	micro	oscop	y analysis	of Arab	idopsi	is root
29 30 73	0 cell damag	e.								
31 32 73	1 Suppleme	ntal Figure	S5 . F	Reproducib	ility o	of m	netabolite	profile	s be	tween
33 34 73	2 experimen	ts.								
36 37 37	3 Suppleme	ntal Figure	S6. Bi	nary PLS	S-DA	analy	rsis of r	metaboli	te pr	ofiles.
38 39 73	4 Suppleme	ntal Figure S	7. Details	s of quantit	ative c	differe	nces in m	etabolite	es.	
40 41 73	5 Suppleme	ntal Figure S	8. Relativ	ve quantitie	es of b	enzo>	azinoids.			
42 43 73	6 Suppleme	ntal Figure S	9. Profilir	ng distal rh	izosph	iere c	hemistry.			
44 45 73	7 Suppleme	ntal Table S1	. Putative	e identifica	tion of	Arab	idopsis m	etabolic	marke	ers.
47 47 48 73	8 Suppleme	ntal Table S2	. Putative	e identifica	tion of	maiz	e metabol	lic marke	ers.	
49 50 73	9 Suppleme	ntal Methods								
51 52 74	0									
53 54 74	1									
55 56 74 57 58 59	2 REFEREN	NCES								

	Pétriacq et al. Rhizosphere metabolomics
743	Ahmad. S., Vevrat, N., Gordon-Weeks, R., et al. (2011) Benzoxazinoid metabolites regulate in
744	immunity against aphids and fungi in maize. <i>Plant Physiol.</i> , 157 , 317–327.
745	Atwal, A.S., Teather, R.M., Liss, S.N. and Collins, F.W. (1992) Antimicrobial activity of 2-
746	aminophenoxazin-3-one under anaerobic conditions. Can J Microbiol, 38 , 1084–1088.
747	Badri, D. V. and Vivanco, J.M. (2009) Regulation and function of root exudates. Plant Cell Envi
748	32 , 666–681.
749	Bakker, P.A.H.M., Berendsen, R.L., Doornbos, R.F., Wintermans, P.C.A. and Pieterse, C.M.J. (
750	The rhizosphere revisited: root microbiomics. <i>Front. Plant Sci.</i> , 4 , 165.
751	Berendsen, R.L., Pieterse, C.M.J. and Bakker, P. a H.M. (2012) The rhizosphere microbiome ar
752	plant health. <i>Trends Plant Sci.</i> , 17 , 478–86.
753	Bodenhausen, N., Horton, M.W. and Bergelson, J. (2013) Bacterial communities associated w
754	leaves and the roots of Arabidopsis thaliana. <i>PloS One</i> , 8 , e56329.
755	Bowsher, A.W., Ali, R., Harding, S.A., Tsai, CJ. and Donovan, L.A. (2016) Evolutionary Diverg
756	in Root Exudate Composition among Ecologically-Contrasting Helianthus Species. PloS
757	11 , e0148280.
758	Boyes, D.C., Zayed, a M., Ascenzi, R., McCaskill, a J., Hoffman, N.E., Davis, K.R. and Görlach,
759	(2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throu
760	functional genomics in plants. <i>Plant Cell</i> , 13 , 1499–510.
761	Bravin, M.N., Michaud, A.M., Larabi, B. and Hinsinger, P. (2010) RHIZOtest: a plant-based bio
762	account for rhizosphere processes when assessing copper bioavailability. Environ. Pollo
763	Barking Essex 1987, 158 , 3330–3337.
764	Bulgarelli, D., Garrido-Oter, R., Münch, P.C., Weiman, A., Dröge, J., Pan, Y., McHardy, A.C. an
765	Schulze-Lefert, P. (2015) Structure and Function of the Bacterial Root Microbiota in W
766	Domesticated Barley. <i>Cell Host Microbe</i> , 17 , 392–403.
767	Cameron, D.D., Neal, A.L., Wees, S.C.M. van and Ton, J. (2013) Mycorrhiza-induced resistance
768	more than the sum of its parts? <i>Trends Plant Sci.</i> , 18 , 539–45.
769	Caporaso, J.G., Kuczynski, J., Stombaugh, J., et al. (2010a) QIIME allows analysis of high-throu
770	community sequencing data. <i>Nat. Methods</i> , 7 , 335–336.
771	Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L. and Knight, R. (202
772	PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinforma. Ox
773	Engl., 26 , 266–267.
774	Chaignon, V., Quesnoit, M. and Hinsinger, P. (2009) Copper availability and bioavailability are
775	controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil. Environ.
776	Pollut. Barking Essex 1987, 157 , 3363–3369.
777	Chelius, M.K. and Triplett, E.W. (2001) The Diversity of Archaea and Bacteria in Association wi
	Roots of Zea mays L. Microb. Ecol., 41, 252–263.
778	
778 779	Dam, N.M. van and Bouwmeester, H.J. (2016) Metabolomics in the Rhizosphere: Tapping into

The Plant Journal

1		Pétriacq et al.	Rhizosphere metabolomics
2			
3	781	DeSantis, T.Z., Hugenholtz, P., Larsen,	N., et al. (2006) Greengenes, a chimera-checked 16S rRNA
4 5 6	782 783	gene database and workbench 5072.	compatible with ARB. <i>Appl. Environ. Microbiol.</i> , 72 , 5069–
7 8 9	784 785	Dessaux, Y., Grandclément, C. and Fau 21, 566–78.	re, D. (2016) Engineering the Rhizosphere. Trends Plant Sci.,
10 11 12	786 787	Edgar, R.C. (2010) Search and clusterin Engl., 26 , 2460–2461.	g orders of magnitude faster than BLAST. <i>Bioinforma. Oxf.</i>
13	788	Edgar R.C. Haas B.L. Clemente I.C.	Quince C and Knight B (2011) UCHIME improves sensitivity
14 15	789	and speed of chimera detection	n. Bioinforma. Oxf. Engl., 27 , 2194–2200.
16	790	Gamir, J., Cerezo, M. and Flors, V. (201	4) The plasticity of priming phenomenon activates not only
1/	791	common metabolomic fingern	int but also specific responses against P cucumerina <i>Plant</i>
18 19 20	792	Signal. Behav., 9 , e28916.	
20 21	793	Gamir. J., Pastor, V., Kaever, A., Cerezo	b. M. and Flors. V. (2014) Targeting novel chemical and
22	794	constitutive primed metabolite	s against Plectosphaerella cucumerina. <i>Plant J.</i> , 78 , 227–240.
23	795	Glauser, G., Vevrat, N., Rochat, B., Wo	Ifender, II., and Turlings, T.C.I. (2013) Ultra-high pressure
25	796	liquid chromatography-mass sr	ectrometry for plant metabolomics: a systematic comparison
26	797	of high-resolution guadrupole-	time-of-flight and single stage Orbitran mass spectrometers
27 28	798	J. Chromatogr. A, 1292 , 151–15	ine of highe and single stage orbitrap mass speet officiels.
29	799	Haase, S., Rothe, A., Kania, A., Wasaki	L. Römheld, V., Engels, C., Kandeler, F. and Neumann, G.
30	800	(2008) Responses to iron limita	tion in Hordeum vulgare L as affected by the atmospheric
31 32	801	CO2 concentration. J. Environ.	Qual., 37 , 1254–1262.
33	802	Hao, D.C., Song, S.M., Mu, J., Hu, W.L.	and Xiao, P.G. (2016) Unearthing microbial diversity of Taxus
34	803	rhizosphere via MiSeg high-thr	nughnut amplicon sequencing and isolate characterization
35 36	804	Sci. Rep., 6 , 22006.	
37	805	Hassan, S. and Mathesius, U. (2012) Th	e role of flavonoids in root-rhizosphere signalling:
38	806	opportunities and challenges for	pr improving plant-microbe interactions, J. Exp. Bot., 63.
39 40	807	3429–3444.	
41	808	Hinsinger P. Plassard C and Jaillard	B (2006) Rhizosphere: A new frontier for soil
42 43 44	809	biogeochemistry. J. Geochem. I	Explor., 88 , 210–213.
45	810	Hochberg, Y. and Benjamini, Y. (1990)	More nowerful procedures for multiple significance testing
46 47	811	Stat. Med., 9 , 811–818.	
48	812	Jones, D.L., Nguyen, C. and Finlay, R.D.	(2009) Carbon flow in the rhizosphere: carbon trading at the
49 50	813	soil–root interface. Plant Soil, 3	21 , 5–33.
51	814	Kaever, A., Landesfeind, M., Possienke	. M., Feussner, K., Feussner, J. and Meinicke, P. (2012)
52	815	MarVis-Filter: ranking filtering	adduct and isotope correction of mass spectrometry data
53	816	Biomed Riotechnol 2012 263	910.
54	010		
55	817	Kaever, A., Lingner, T., Feussner, K., Gö	bel. C., Feussner, I. and Meinicke. P. (2009) MarVis: a tool
56 57 58 59	818	for clustering and visualization	of metabolic biomarkers. <i>BMC Bioinformatics</i> , 10 , 92.

		Pétriacq et al. Rhizosphere metabolomics
1		
2		
3	819	Khan, Z.R., Hassanali, A., Overholt, W., Khamis, T.M., Hooper, A.M., Pickett, J.A., Wadhams, L.J.
4	820	and Woodcock, C.M. (2002) Control of witchweed Striga hermonthica by intercropping with
5	821	Desmodium spp., and the mechanism defined as allelopathic. J. Chem. Ecol., 28, 1871–1885.
6	011	
7	877	Khorassani R. Hettwer II. Ratzinger A. Steingrohe R. Karlovsky P. and Claassen N. (2011)
8	022	Citramalic acid and calicylic acid in curar heat root avudates calubilize call phoenbarus. PMC
9	023	Diget Diget 11 121
10	824	Pluit Biol., 11 , 121.
11	0.05	
12	825	Kuijken, R.C.P., Snel, J.F.H., Heddes, M.M., Bouwmeester, H.J. and Marcelis, L.F.M. (2014) The
13	826	importance of a sterile rhizosphere when phenotyping for root exudation. <i>Plant Soil</i> , 387 ,
14	827	131–142.
15		
16	828	Lakshmanan, V., Kitto, S.L., Caplan, J.L., Hsueh, YH., Kearns, D.B., Wu, YS. and Bais, H.P. (2012)
17	829	Microbe-associated molecular patterns-triggered root responses mediate beneficial
18	830	rhizobacterial recruitment in Arabidopsis. <i>Plant Physiol.</i> , 160 , 1642–61.
10		······································
20	831	Lev-Yadun, S. and Berleth, T. (2009) Expanding ecological and evolutionary insights from wild
20	832	Arabidonsis thaliana accessions Plant Signal Behav A 796–797
21	052	Alabidopsis thaliana accessions. Plant Signal. Denav., 4, 750–757.
22	077	Love MI, Huber W, and Anders S (2014) Mederated estimation of fold change and dispersion for
23	033	Love, IVI.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for
24	834	RNA-seq data with DESeq2. Genome Biol., 15 , 550.
25		
20	835	Luna, E., Hulten, M. van, Zhang, Y., et al. (2014) Plant perception of β-aminobutyric acid is mediated
27	836	by an aspartyl-tRNA synthetase. <i>Nat. Chem. Biol.</i> , 10 , 450–6.
28		
29	837	Lundberg, D.S., Lebeis, S.L., Paredes, S.H., et al. (2012) Defining the core Arabidopsis thaliana root
30	838	microbiome. <i>Nature</i> , 488 , 86–90.
31		
32	839	Macías, F.A., Marín, D., Oliveros-Bastidas, A., Castellano, D., Simonet, A.M. and Molinillo, J.M.G.
33	840	(2005) Structure-Activity Relationships (SAR) studies of benzoxazinones, their degradation
34	841	products and analogues, phytotoxicity on standard target species (STS) / Agric Food Chem
35	8/2	
36	042	JJ , JJ0 ⁻ J40.
37	010	Marti C Eth M Baccard L at al (2012) Matabalamics reveals barbiyers induced metabalites of
38	043	Warti, G., Erb, W., Boccard, J., et al. (2013) Metabolomics reveals herbivore-induced metabolites of
39	844	resistance and susceptibility in maize leaves and roots. Plant Cell Environ., 36 , 621–639.
40	-	
41	845	McMurdie, P.J. and Holmes, S. (2013) phyloseq: An R Package for Reproducible Interactive Analysis
42	846	and Graphics of Microbiome Census Data M. Watson, ed. PLoS ONE, 8, e61217.
43		
44	847	Neal, A.L., Ahmad, S., Gordon-Weeks, R. and Ton, J. (2012) Benzoxazinoids in root exudates of
45	848	maize attract Pseudomonas putida to the rhizosphere. <i>PloS One</i> , 7 , e35498.
46		
47	849	Neal, A.L. and Ton, J. (2013) Systemic defense priming by Pseudomonas putida KT2440 in maize
48	850	depends on benzoxazinoid exudation from the roots. Plant Signal, Behav., 8, e22655
49		
50	851	Neumann, G., George, T.S. and Plassard, C. (2009) Strategies and methods for studying the
51	Q57	rhizosnhere_the plant science toolhov <i>Plant Soil</i> 271 A21_456
52	032	111203phere—the plant science toolbox. Fluit Joli, 321 , 451 - 450.
53	050	Oburger E. Dell'mour M. Henn C. Wiechemmer C. Durchemeiter M. and Manuel MUM. (2012)
54	853	Oburger, c., Dell mour, IVI., Hann, S., Wiesnammer, G., Puschenreiter, IVI. and Wenzel, W.W. (2013)
55	854	Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to
56	855	conventional techniques. Environ. Exp. Bot., 87, 235–247.
57		
58		
50		
60		24
00		34

The Plant Journal

		<i>Pétriacq</i> et al.	Rhizosphere metabolomics
1			
2	056	Oburger E and Schmidt H (2016) New	Methods To Uproval Phizosphere Processos Trands Plant
3 1	000 007	Oburger, E. and Schmidt, H. (2016) New	Methods To Onraver Rhizosphere Processes. Trends Plant
4 5	857	<i>301., 21, 243–255.</i>	
6	858	Pastor V Gamir I Camañes G Cere	o M Sánchez-Bel P and Flors V (2014) Disruption of the
7	859	ammonium transporter AMT1 1	alters hasal defenses generating resistance against
8	860	Decudomonas syringae and Plec	tosphaerella cucumerina. Front Plant Sci 5 221
9	800	r seudomonas synngae and riec	cospilaerella cucumenna. <i>Front. Frant Sci.</i> , 3 , 231.
10	861	Patra M. Salonen F. Terama F. Vattı	lainen I. Faller R. Lee R.W. Holonainen I. and
11	862	Karttunen M (2006) Under the	Influence of Alcohol: The Effect of Ethanol and Methanol on
12	863	Lipid Bilayers Bionbys / 90 11	
13	005		21 1155.
14	864	Pétriaco P. Stassen I.H. and Ton I. (2)	116a) Spore density determines infection strategy by the
15	865	nlant-nathogenic fungus Plectos	nhaerella cucumerina <i>Plant Physiol</i> 170 2325–2339
16	005	plant patriogenie langus licetos	
17	866	Pétriaco, P., Ton, J., Patrit, O., Tcherkez	G. and Gakière. B. (2016b) NAD acts as an integral
18	867	regulator of multiple defense lay	vers Plant Physiol 177 1465–1479
19	007	regulator of multiple defense la	(13.1 Mill 1 1950), 272 , 1405 1475.
20	868	Phillips, R.P., Frlitz, Y., Bier, R. and Bern	hardt, F.S. (2008) New approach for capturing soluble root
21	869	exudates in forest soils Funct F	rol 22 990–999
23	005		, ==,
24	870	Planchamp, C., Glauser, G. and Mauch-I	Mani, B. (2014) Root inoculation with Pseudomonas putida
25	871	KT2440 induces transcriptional a	nd metabolic changes and systemic resistance in maize
26	872	plants. Front. Plant Sci., 5, 719.	
27		, , . , . , . , . , . , .	
28	873	Prithiviraj, B., Paschke, M.W. and Vivan	co, J.M. (2007) Root communication: The role of root
29	874	exudates. Encycl. Plant Crop Sci.	
30		, , ,	
31	875	Robert, C.A.M., Veyrat, N., Glauser, G.,	et al. (2012) A specialist root herbivore exploits defensive
32	876	metabolites to locate nutritious	tissues: A root herbivore exploits plant defences. Ecol. Lett.,
33	877	15 , 55–64.	
34 25			
36	878	Rudrappa, T., Czymmek, K.J., Paré, P.W	and Bais, H.P. (2008) Root-secreted malic acid recruits
37	879	beneficial soil bacteria. Plant Ph	vsiol., 148 , 1547–56.
38			
39	880	Sgherri, C., Cecconami, S., Pinzino, C., N	avari-Izzo, F. and Izzo, R. (2010) Levels of antioxidants and
40	881	nutraceuticals in basil grown in l	hydroponics and soil. Food Chem., 123 , 416–422.
41			
42	882	Shi, S., Richardson, A.E., O'Callaghan, N	I., DeAngelis, K.M., Jones, E.E., Stewart, A., Firestone, M.K.
43	883	and Condron, L.M. (2011) Effect	s of selected root exudate components on soil bacterial
44	884	communities. FEMS Microbiol. E	col., 77 , 600–610.
45			
46	885	Silva Lima, L. da, Olivares, F.L., Rodrigue	es de Oliveira, R., Vega, M.R.G., Aguiar, N.O. and Canellas,
47	886	L.P. (2014) Root exudate profilir	g of maize seedlings inoculated with Herbaspirillum
48	887	seropedicae and humic acids. Ch	em. Biol. Technol. Agric., 1 , 1–18.
49 50			
50	888	Smalla, K., Sessitsch, A. and Hartmann,	A. (2006) The Rhizosphere: "soil compartment influenced by
52	889	the root." FEMS Microbiol. Ecol.	56 , 165–165.
53			
54	890	Smith, C.A., Want, E.J., O'Maille, G., Ab	agyan, K. and Siuzdak, G. (2006) XCMIS: processing mass
55	891	spectrometry data for metabolit	e profiling using nonlinear peak alignment, matching, and
56	892	identification. Anal. Chem., 78, 7	/9–/8/.
57			
58			
59			
60			35
		Pétriacq et al. Rhizosphere metabolomics	
----	-------------	---	
1			
2			
3	893	Song, F., Han, X., Zhu, X. and Herbert, S.J. (2012) Response to water stress of soil enzymes and root	
4	894	exudates from drought and non-drought tolerant corn hybrids at different growth stages.	
5	895	Can / Soil Sci 92 501–507	
6	000	cun. 5. 50h 5cl., 52 , 501 507.	
7	0 06	Strohmal N. Bättchar C. Schmidt S. and School D. (2014) Drafiling of secondary matchalites in	
8	000	Strennier, N., Bottener, C., Schmut, S. and Scheer, D. (2014) Prohining of Secondary metabolites in	
9	897	root exudates of Arabidopsis thaliana. <i>Phytochemistry</i> , 108 , 35–46.	
10			
11	898	Swenson, I.L., Jenkins, S., Bowen, B.P. and Northen, I.R. (2015) Untargeted soil metabolomics	
12	899	methods for analysis of extractable organic matter. <i>Soil Biol. Biochem.</i> , 80 , 189–198.	
13			
14	900	Szoboszlay, M., White-Monsant, A. and Moe, L.A. (2016) The Effect of Root Exudate 7,4'-	
15	901	Dihydroxyflavone and Naringenin on Soil Bacterial Community Structure. PloS One, 11,	
16	902	e0146555.	
10			
10	903	Tavakkoli, E., Rengasamy, P. and McDonald, G.K. (2010) The response of barley to salinity stress	
10	904	differs between hydrononic and soil systems Funct Plant Biol 37 621–633	
19	501		
20	905	Liren N (2007) Types Amounts and Possible Europtions of Compounds Released into the	
21	006	Phizosphere by Soil Grown Plants. In In The Phizosphere: Piechamistry and Organic	
22	900	Rilizosphere by Son-Grown Plants. In In The Rilzosphere. Biochemistry and Organic	
23	907	Substances at the Soil- Plant Interface.Eas. R Pinton, 2 Varanini and P Nannipieri. pp. 19–40.	
24	908	Marcel Dekker, Inc, New York. pp. 1–21.	
25			
26	909	Vranova, V., Rejsek, K., Skene, K.R., Janous, D. and Formanek, P. (2013) Methods of collection of	
27	910	plant root exudates in relation to plant metabolism and purpose: A review. J. Plant Nutr. Soil	
28	911	Sci., 176 , 175–199.	
29			
30	912	Xia, J., Sinelnikov, I.V., Han, B. and Wishart, D.S. (2015) MetaboAnalyst 3.0—making metabolomics	
31	913	more meaningful. Nucleic Acids Res., 43, 251–257.	
32			
33	914	Yi, HS., Ahn, YR., Song, G.C., Ghim, SY., Lee, S., Lee, G. and Ryu, CM. (2016) Impact of a	
34	015	Bacterial Volatile 2 3-Butanediol on Bacillus subtilis Bhizosphere Robustness Front	
35	016	Microhiol 7 003	
36	910	Wile Obiol., 7, 333.	
37	017	Vin H. Wheeler E and Philling P.D. (2014) Poet induced changes in putrient cycling in forests	
38	917	demand an any detion rates (cill Discharm, 70 , 212, 221	
39	918	depend on exudation rates. Soil Biol. Biochem., 78, 213–221.	
40			
41	919	Zamioudis, C., Hanson, J. and Pieterse, M.J. (2014) b -Glucosidase BGLU42 is a MYB72-dependent	
42	920	key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency	
43	921	responses in Arabidopsis roots. <i>New Phytol.</i> , 204 , 368–379.	
44			
45	922	Zhang, D., Zhang, C., Tang, X., Li, H., Zhang, F., Rengel, Z., Whalley, W.R., Davies, W.J. and Shen, J.	
46	923	(2016) Increased soil phosphorus availability induced by faba bean root exudation stimulates	
47	924	root growth and phosphorus uptake in neighbouring maize. New Phytol. 209 . 1–9.	
48			
49	925	Ziegler, J., Schmidt, S., Chutia, R., Müller, J., Böttcher, C., Strehmel, N., Scheel, D. and Abel, S.	
50	926	(2015) Non-targeted profiling of semi-polar metabolites in Arabidonsis root evudates	
51	020	(2013) Non targeted proming of semi-polar metabolites in Arabidopsis root extudites	
52	927	uncovers a role for countain secretion and lightication during the local response to	
53	928	phosphate limitation. J. Exp. Bot., b 7, 1421–1432.	
54			
55	929		
56			
57	000		
58	930		
59			
60		36	

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

931 ACCESSION NUMBERS

- The sequences used in this study can be found in the European Nucleotide Archive
- 933 (<u>http://www.ebi.ac.uk/ena</u>) under accession number PRJEB17782.

936 FIGURE LEGENDS

Figure 1. Experimental growth system and analytical approach for comprehensivechemical profiling of non-sterile rhizosphere soil.

(a) 1. Collection tubes (30 mL) with bottom holes (7 mm) covered by miracloth were filled with a sand:compost mixture 9:1 (v/v) and wrapped in aluminium foil to prevent excess algal growth. Individual Arabidopsis plants (Col-0) were grown for 5 weeks in tubes. Additional tubes containing control soil without plants were maintained under similar conditions. 2. After application of 5 mL of extraction solution, metabolite samples were collected for 1 min, centrifuged and freeze-dried. 3. Concentrated samples were analysed by ultra-high-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF). 4. Multi- and univariate statistical methods were used to determine gualitative and guantitative differences between extracts from control soil and Arabidopsis soil. Selection of ions by statistical difference and fold-change between soil types enabled putative identification of metabolites that were enriched in non-sterile rhizosphere soil.

(b) Photographs of the experimental system. Top: tubes after 4.5 weeks of growth.
Bottom: tubes after 3 weeks of growth taped onto petri-dishes to prevent cross
contamination of metabolites and microbes.

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

Figure 2. Rhizosphere effect by Arabidopsis in the cultivation system based on 16S
rRNA gene sequencing.

Shown are comparisons of bacterial communities between samples from control soil
(without roots) and root samples plus adhering rhizosphere soil.

960 (a) Principal coordinate analysis of OTUs in root + rhizosphere samples (red) and 961 control soil samples (green). Ordinations were performed using weighted Unifrac 962 distances. PERMANOVA analysis showed that the root and control soil samples 963 differed significantly (P = 0.023).

(b) OTUs that differ in relative abundance between root + rhizosphere samples and control soil samples. OTUs with positive fold changes are more abundant in the root plus rhizosphere samples than control samples. Results are plotted by family for OTUs that showed a significant difference in abundance as calculated using DESeq2, corrected for false discovery. Only OTUs which have a mean count \ge 20 are shown for clarity. NA, taxonomy not available.

Figure 3. Effects of methanol (MeOH)-containing extraction solutions on electrolytes
leakage from Arabidopsis roots (a) and viability of soil microbes (b, c).

(a) Quantification of electrolytes leakage from Arabidopsis roots after incubation for 1 min in acidified extraction solutions containing 0%. 50% or 95% MeOH (v/v) and 0.05% formic acid (v/v). The negative control treatment (-ctrl) refers to intact roots that had not been exposed to any extraction solution. As a positive control treatment for cell damage, wounding was inflicted prior to incubation by cutting roots with a razor blade. Shown are average levels of conductivity ($n = 4, \pm$ SEM), relative to the maximum level of conductivity after tissue lysis (set at 100%). Statistically significant differences between treatments were determined by a Welch's F test for ranked data

Page 38 of 86

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

(P values indicated in the upper left corner), followed by Games-Howell post-hoc tests (P < 0.05; different letters indicate statistically significant differences). (b-c) Effects of MeOH-containing extraction solutions on viability of soil (b) and rhizosphere (c) microbes. Shown are average values of colony forming units (CFU) per g of soil for culturable soil bacteria, Bacillus subtilis 168 and Pseudomonas simiae WCS417r from extraction solution-treated soils ($n = 3, \pm$ SEM). Asterisks indicate statistically significant differences between negative control (water-flushed soil) and the corresponding treatment (P < 0.05, Student's t-test). In all cases, only positive controls (*i.e.* incubation in 95% MeOH for 45 min) showed statistically significant differences. Figure 4. Global differences in metabolite profiles between extracts from control soil ('soil') and Arabidopsis soil ('plant'). Shown are multivariate and hierarchical cluster analyses of mass spectrometry data from extracts with different extraction solutions (indicated by % MeOH). lons (m/zvalues) were obtained by UPLC-Q-TOF analysis in both positive (ESI⁺) and negative

997 (ESI⁻) ionization mode. Prior to analysis, data were median-normalized, cube-root998 transformed and Pareto-scaled.

(a) Unsupervised three-dimensional principal component analysis (3D-PCA). Shown
in parentheses are the percentages of variation explained by each principal
component (PC).

1002 (**b**) Cluster analysis (Pearson's correlation).

(c) Supervised partial least square discriminant analysis (PLS-DA). R² and Q² values
 indicate correlation and predictability values of PLS-DA models, respectively.

The Plant Journal

Rhizosphere metabolomics

Figure 5. Quantitative differences in metabolite abundance between extracts fromcontrol soil and Arabidopsis soil.

(a) Volcano plots expressing statistical enrichment of ions (Welch's *t*-test) as a function of fold-difference in control soil (red; 'soil') and Arabidopsis soil (green; 'rhizosphere'). Data shown represent positive (ESI⁺) and negative (ESI⁻) ions from extractions with different solutions (indicated by % MeOH). Cut-off values were set at P < 0.01 (-Log10 = 2) and fold-change > 2 (Log2 = 1).

(b) Venn diagrams showing overlap in ions (cations and anions combined) that are significantly different between control and Arabidopsis soil samples (left panel; P <0.01, Welch's *t*-test; without fold-change threshold), enriched in extracts from Arabidopsis soil (middle panel; > 2-fold enrichment to soil at P < 0.01, Welch's *t*test), and enriched in control soil (right panel; < 2-fold enrichment to rhizosphere at P0.01, Welch's *t*-test).

Figure 6. Composition of putative metabolites enriched in control soil (left) or Arabidopsis soil (right).

Differentially abundant ions were selected from the top 20-ranking ions of each volcano plot (Figure 5a) and filtered for statistical significance between all soil/extraction solution combinations (ANOVA with Benjamini-Hochberg FDR: P < P0.01). The resulting 76 rhizosphere-enriched ions and 75 control soil-enriched ions were corrected for adducts and/or C isotopes (tolerance: m/z = 0.1 Da and RT = 10 s), and cross-referenced against publicly available databases for putative identification. A comprehensive table of all rhizosphere- and soil-enriched markers is presented in Supplemental Table S1. Multiple ions putatively annotating to the same metabolite were counted additively towards the metabolite classes in the pie-charts.

The Plant Journal

Rhizosphere metabolomics

1031 Putative metabolites that unlikely accumulate as natural products in (rhizosphere) 1032 soil (*e.g.* synthetic drugs, mammalian hormones) were not included in the final 1033 selection presented. Miscellaneous: putative metabolites that do not belong to any of 1034 the other metabolite classes listed. Unknown: ion markers that could not be assigned 1035 to any known compound.

Figure 7. Applicability of the profiling method for maize in agricultural soil.

1038 The experimental system for extracting soil chemistry was based on 50-mL collection 1039 tubes filled with a mixture of agricultural soil from arable farmland and perlite (75:25, 1040 v/v). Samples were extracted with the 50% MeOH (v/v) solution 17 days after 1041 planting.

(a) Quantification of maize root damage after direct exposure to the extraction solutions. Five day-old maize roots were incubated for 1 min in acidified extraction solutions containing 0%, 50% or 95% MeOH (v/v) and tested for electrolytes leakage by conductivity. For details, see legend to Figure 3a. Shown are average levels of conductivity ($n = 4, \pm$ SEM), relative to the maximum level of conductivity after tissue lysis (set at 100%). Statistically significant differences between treatments were determined by a Welch's F test for ranked data (P values indicated in the upper left corner of each panel), followed by Games-Howell post-hoc tests (P < 0.05; different letters indicate statistically significant differences).

(b) Unsupervised 3D-PCA, showing global differences in metabolic profiles between
 control soil (red) and maize soil (green). Shown are data from extracts with the 50%
 MeOH (v/v) extraction solution. For further details, see legend to Figure 4.

1054 (c) Volcano plots expressing statistical enrichment of ions (Welch's *t*-test) as a 1055 function of fold-difference in control soil (red; 'soil') and maize soil (green;

2	
3	
1	
5	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
77 / Q	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
ປສ	

1

1056	'rhizosphere'). Cut-off values were set at $P < 0.01$ (-Log10 = 2) and fold-change > 2
1057	(Log2 = 1).
1058	(d) Relative composition of putative metabolite classes enriched in control soil (left)
1059	or maize soil (right). Differentially abundant metabolites were selected from the top
1060	50-ranking ions of each volcano plot (ESI ⁺ and ESI ⁻ ; c), corrected for adducts and/or
1061	C isotopes (tolerance: $m/z = 0.1$ Da and RT = 10 s), and cross-referenced against
1062	publicly available databases for putative identification. A comprehensive table of all
1063	rhizosphere- and soil-enriched markers is presented in Supplemental Table S2.
1064	Putative metabolites that unlikely accumulate as natural products in (rhizosphere)
1065	soil (e.g. synthetic drugs, mammalian hormones) were not included in the final
1066	selection presented. For further details, see legend to Figure 6.
1067	
1068	
1069	SUPPORTING INFORMATION
1070	
1071	Supplemental Figure S1. Rarefaction curves of detected OTUs.
1072	Shown are curves after removal of singletons for replicate root + rhizosphere
1073	samples (green) and control soil samples (red).
1074	
1075	Supplemental Figure S2. Relative abundance (%) of selected families in control soil
1076	samples ('Soil'; red) and root + rhizosphere samples ('Root'; green) from the
1077	Arabidopsis growth system.
1078	Shown are families containing OTUs with relative abundances > 2% in one or more
1079	samples. Each bar represents an individual biological replicate. NA, taxonomy not

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

Supplemental Figure S3. Model of expected impacts of solvent polarity on the extraction of soil metabolites. (a) Examples of solvent polarities and their impact on the type of metabolites extracted. Polarity index of water, methanol (MeOH) and hexane are shown within parentheses. (b) Hypothesized impact of solvent polarity on cell damage of plant roots and soil microbes. Supplemental Figure S4. Epi-fluorescence microscopy analysis of cell damage in Arabidopsis roots after exposure to MeOH-containing extraction solutions. Transgenic roots producing the cytoplasmic aspartyl-tRNA synthase IBI1 fused to YFP (35S::IBI1:YFP; Luna et al., 2014) were incubated for 1 min in water or acidified extraction solutions with increasing MeOH concentration (0, 50 or 95% MeOH, v/v + 0.05% formic acid. v/v). After incubation, roots were then rinsed in sterile water, and analysed for YFP fluorescence. Photographs show representative examples from observations of at least 12 roots for each treatment. As a positive control for cell damage, roots were incubated in 100% MeOH for 15 min. The experiment was performed four time with similar results. Scale bars: 50 µm. Supplemental Figure S5. Reproducibility of differences in metabolite profiles between control and Arabidopsis soil over three independent experiments. Shown are unsupervised three-dimensional principal component analyses (3D-PCA) from extracts by the different solutions (indicated by % MeOH). Ions (m/z values) were obtained by UPLC-Q-TOF in positive (ESI⁺, left panels) and negative (ESI⁻,

Pétriacq et al.

Rhizosphere metabolomics

right panel) ionization modes. Analysis was carried out with MetaboAnalyst (v. 3.0), after median normalization, cube-root transformation and Pareto scaling of data. In parentheses are shown the percentages of variation explained by each principal component.

Supplemental Figure S6. Binary PLS-DA analysis of metabolite profiles from
control soil and Arabidopsis soil for different extraction solutions (indicated by %
MeOH).

lons (m/z values) were obtained by UPLC-Q-TOF analysis in both positive (ESI⁺, left panels) and negative (ESI⁻, right panel) ionization mode. Prior to analysis, data were median-normalized, cube-root-transformed and Pareto-scaled. All R² (correlation) and Q² (predictability) values of PLS-DA models were above 0.94 and 0.59, respectively.

Supplemental Figure S7. Quantitative differences in detected ions (UPLC-Q-TOF)
 between extracts from control and Arabidopsis soil.

(a) Total numbers of ions (top) detected in Arabidopsis soil and control soil after
extraction with the different extraction solutions (indicated by % MeOH). Venn
diagrams (bottom) show overlap in total ion numbers between extracts for each
extraction solution.

(b) Venn diagrams showing overlap in cations (ESI⁺) and anions (ESI⁻) that are statistically different between control and Arabidopsis soil (left panel; P < 0.01, Welch's *t*-test), that are enriched in extracts from Arabidopsis soil (middle panel; > 2fold enrichment to soil at P < 0.01, Welch's *t*-test), and that enriched are in extracts from control soil (right panel; < 2-fold enrichment to soil at P < 0.01, Welch's *t*-test).

Pétriacq et al.

The Plant Journal

Rhizosphere metabolomics

1		
2 3	1131	
4 5 6	1132	Supplemental Figure S8. Relative quantities of selected benzoxazinoid ions in
7 8	1133	extracts from maize soil and corresponding control soil.
9 10	1134	Selective ions (m/z) of HBOA (2-hydroxy-4H-1,4-benzoxazin-3-one), DIBOA (2,4-
11 12	1135	dihydroxy-1,4-benzoxazin-3-one) and 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-
13 14 15	1136	3(4H)-one were detected on the basis of retention time and m/z value, using UPLC-
16 16 17	1137	Q-TOF (ESI ⁺ , Δ ppm = 0). Charts indicate means of relative abundances (<i>n</i> = 5, ±
18 19	1138	SEM). Levels of statistical significance are indicated in red above the corresponding
20 21	1139	bars (Student's <i>t</i> -test).
22 23	1140	
24 25 26	1141	Supplemental Figure S9. Profiling distal rhizosphere chemistry.
27 28	1142	(a) Experimental growth system to profile chemistry of distal rhizosphere fractions.
29 30	1143	Maize was grown within nylon mesh bags inside 150-mL tubes, containing
31 32	1144	agricultural soil from arable farmland and perlite (75:25, v/v). Similar plant-free tubes
33 34 35	1145	were constructed as controls. After 24 days of growth, chemicals were extracted with
36 37	1146	the 50% MeOH solution from either the entire pot (whole soil), or the soil surrounding
38 39	1147	the root containing mesh bag after its careful removal (distal soil).
40 41	1148	(b) Binary PCAs showing chemical rhizosphere effects in whole soil fractions (upper
42 43	1149	panel; short + long distance influence) and distal soil fractions (lower panel; long
44 45 46	1150	distance influence), illustrating that the rhizosphere extends beyond soil that is
40 47 48	1151	closely associated with roots.
49 50	1152	(c) Targeted quantification of DIMBOA by UPLC-Q-TOF. Shown are average ion
51 52	1153	intensities (\pm SEM; $n = 6$), normalised by soil weight. Letters indicate statistically
53 54	1154	significant differences between soil types (Student's <i>t</i> -test, $P < 0.05$).
55 56 57 58	1155	
60		45

The Plant Journal

Supplemental Table S1. Putative identities of ions enriched in Arabidopsis soil and

Pétriacq et al.

Rhizosphere metabolomics

1157	corresponding control soil.
1158	¹ Percentages indicate relative MeOH contents of the acidified extraction solutions.
1159	² P values are derived from ANOVA followed by false discovery rate correction
1160	(Benjamini-Hochberg).
1161	³ Retention times (RT) and accurate m/z values, detected by UPLC-Q-TOF in
1162	negative (-) or positive (+) ion mode.
1163	⁴ Predicted parameters were derived from the METLIN database, using accurate m/z
1164	values.
1165	⁵ Putative metabolites and their corresponding pathways were validated by
1166	information from the PubMed chemical database.
1167	⁶ Putative metabolites that unlikely accumulate in (rhizosphere) soil.
1168	
TT00	
1169	Supplemental Table S2. Putative identities of ions enriched in maize soil and
1169 1170	Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil.
1169 1170 1171	Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil. ¹ Fold-change between maize rhizosphere samples and control soil samples.
1169 1170 1171 1172	 Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil. ¹ Fold-change between maize rhizosphere samples and control soil samples. ² <i>P</i> values are derived from Welch's <i>t</i>-test.
1169 1170 1171 1172 1173	 Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil. ¹ Fold-change between maize rhizosphere samples and control soil samples. ² <i>P</i> values are derived from Welch's <i>t</i>-test. ³ Retention times (RT) and accurate <i>m/z</i> values, detected by UPLC-Q-TOF in
1169 1170 1171 1172 1173 1174	 Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil. ¹ Fold-change between maize rhizosphere samples and control soil samples. ² <i>P</i> values are derived from Welch's <i>t</i>-test. ³ Retention times (RT) and accurate <i>m</i>/<i>z</i> values, detected by UPLC-Q-TOF in negative (-) or positive (+) ion mode.
1169 1170 1171 1172 1173 1174 1175	 Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil. ¹ Fold-change between maize rhizosphere samples and control soil samples. ² <i>P</i> values are derived from Welch's <i>t</i>-test. ³ Retention times (RT) and accurate <i>m/z</i> values, detected by UPLC-Q-TOF in negative (-) or positive (+) ion mode. ⁴ Predicted parameters were derived from the METLIN database, using accurate <i>m/z</i>
1169 1170 1171 1172 1173 1174 1175 1176	 Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil. ¹ Fold-change between maize rhizosphere samples and control soil samples. ² <i>P</i> values are derived from Welch's <i>t</i>-test. ³ Retention times (RT) and accurate <i>m/z</i> values, detected by UPLC-Q-TOF in negative (-) or positive (+) ion mode. ⁴ Predicted parameters were derived from the METLIN database, using accurate <i>m/z</i> values.
1169 1170 1171 1172 1173 1174 1175 1176 1177	 Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil. ¹ Fold-change between maize rhizosphere samples and control soil samples. ² <i>P</i> values are derived from Welch's <i>t</i>-test. ³ Retention times (RT) and accurate <i>m/z</i> values, detected by UPLC-Q-TOF in negative (-) or positive (+) ion mode. ⁴ Predicted parameters were derived from the METLIN database, using accurate <i>m/z</i> values. ⁵ Putative metabolites and their corresponding pathways were validated by
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178	 Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil. ¹ Fold-change between maize rhizosphere samples and control soil samples. ² <i>P</i> values are derived from Welch's <i>t</i>-test. ³ Retention times (RT) and accurate <i>m/z</i> values, detected by UPLC-Q-TOF in negative (-) or positive (+) ion mode. ⁴ Predicted parameters were derived from the METLIN database, using accurate <i>m/z</i> values. ⁵ Putative metabolites and their corresponding pathways were validated by information from the PubMed chemical database.
1100 11169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179	 Supplemental Table S2. Putative identities of ions enriched in maize soil and corresponding control soil. ¹ Fold-change between maize rhizosphere samples and control soil samples. ² <i>P</i> values are derived from Welch's <i>t</i>-test. ³ Retention times (RT) and accurate <i>m/z</i> values, detected by UPLC-Q-TOF in negative (-) or positive (+) ion mode. ⁴ Predicted parameters were derived from the METLIN database, using accurate <i>m/z</i> values. ⁵ Putative metabolites and their corresponding pathways were validated by information from the PubMed chemical database. ⁶ Putative metabolites that unlikely accumulate in (rhizosphere) soil.

Page 47 of 86

Pétriacq et al.

The Plant Journal

Rhizosphere metabolomics

SUPPLEMENTAL METHODS DNA extraction, 16S rRNA gene sequencing and analysis. For microbial profiling, eight additional growth tubes were set up, as described in the Experimental Procedures, but were not used for the collection of chemicals. Four of these tubes contained one Arabidopsis plant and four contained only growth substrate. After 5 weeks, plants were sampled by carefully loosening the soil around the edges of the growth tube, pulling up the roots and removing excess soil by shaking. Soil samples were also taken from the tubes without plants, using a sterile spatula and avoiding surface material. DNA was extracted from the resulting samples consisting of either roots covered in their closely adhering soil (root plus rhizosphere samples), or only soil (control soil), using a PowerSoil DNA extraction kit (MoBio Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer's instructions. Partial prokaryotic 16S rRNA genes were amplified from this extract. using primers 799F and 1193R (Chelius and Triplett, 2001; Bodenhausen et al., 2013), which were modified to include the Illumina overhang adapter nucleotide sequences (adapters shown in normal typeface, locus specific primers in bold letter font): 799F: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG**AACMGGATTAGATACCCKG** 1193R: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACGTCATCCCCACCTTCC.

Pétriacq et al.

Rhizosphere metabolomics

1205	PCRs were carried out, using 0.4 U of KAPA HiFi HotStart DNA polymerase (Kapa
1206	Biosystems Ltd, London, UK) on 2 μL of DNA extract in the presence of 2.5 mM
1207	MgCl ₂ , 1.2 mM deoxynucleoside triphosphates (dNTPs), 0.2 μ M of each primer, and
1208	the manufacturer's reaction buffer in a total reaction volume of 20 μL (PCR
1209	conditions: 95 °C for 3 min; 25 cycles at 95 °C for 30 s, 58 °C for 30 s and 72 °C for
1210	30 s; and 72 $^\circ\text{C}$ for 5 min). To reduce PCR bias, the PCR was performed in triplicate
1211	and amplicons were pooled. A sequencing library was constructed by cleaning up
1212	pooled PCR products, using AMPure XP beads (Beckman Coulter (UK) Ltd, High
1213	Wycomb, UK), followed by attachment of dual indices and Illumina sequencing
1214	adapters, using the Nextera XT Index Kit (Illumina Inc. Essex UK) and following the
1215	manufacturer's instructions. The indexed PCR products were cleaned using AMPure
1216	XP beads and sequencing was performed using a paired end 2 x 250 bp cycle kit v2
1217	on a MiSeq machine running v2 chemistry (Illumina Inc, at The Genome Analysis
1218	Centre, Norwich, UK). Raw sequencing data were deposited in the European
1219	Nucleotide Archive (ENA) under accession number PRJEB17782. Sequences were
1220	analysed by USEARCH (Edgar, 2010) and Qiime pipelines (Caporaso et al., 2010a).
1221	Sequences were filtered using USEARCH, retaining those with a maxEE value of 1
1222	(equivalent to 1 in 1,000 errors) and 251 bp long. Chimeras were detected using
1223	UCHIME (Edgar et al., 2011), using both reference based and de novo detection
1224	methods. After selection of OTUs by USEARCH (97% similarity), the representative
1225	sequences were aligned to the Greengenes 13_8 core reference alignment
1226	(DeSantis et al. 2006) using PyNAST (Caporaso et al., 2010b). All other steps
1227	leading to the generation of OTU abundance tables were performed using Qiime. All
1228	statistical analyses of community data were performed using the R programming
1229	language (R Development Core Team, 2016; <u>https://www.R-project.org/</u>) and with

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

- 1230 the packages phyloseq (McMurdie and Holmes, 2013), vegan 1231 (<u>https://github.com/vegandevs/vegan</u>) and DESeq2 (Love *et al.*, 2014).

1233 Quantification of plant tissue damage by electrolytes leakage.

Tissue damage by the acidified extraction solutions was quantified by conductivity of cell electrolytes leakage, as described previously (Pétriacg et al., 2016a, 2016b). For Arabidopsis, roots were collected from plants cultivated in half strength Murashige-Skoog, solidified with 0.8% Phytagel (Sigma-Aldrich, UK) and adjusted to pH 5.8. Root replicates consisted of one intact root system from 2-week-old plants, which was removed carefully from the agar medium. For maize, roots were collected from surface sterilised seeds, germinated and grown for five days on wetted filter paper in sealed petri-dishes. Tissues were incubated for 1 min in 10 mL of different acidified extraction solutions, containing 0.05% formic acid (v/v) and 0%, 50% or 95% methanol (v/v). As a negative control, tissues were incubated in double-distilled sterile water. As a positive control for cell damage, tissues were wounded prior to extraction solution incubation by cutting roots into 10 pieces with a razor blade. Directly after incubation, tissues were rinsed in double-distilled sterile water, then transferred into glass bottles containing 5 mL of double-distilled sterile water, and subsequently agitated at room temperature for 2 hours on an orbital shaker (200 rpm). Conductivity was then measured in the balanced solution, using a CMD 500 WPA conductivity meter. Subsequently, all samples were boiled for 30 min and re-measured for conductivity of lysed tissue. Cell damage was expressed as the average level of conductivity, relative to the maximum level of conductivity after tissue lysis (set at 100%). Each treatment was based on 4 replicated samples (n =4). Data were analysed in IBM SPSS (v. 22), using a Welch's F test for ranked data,

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

followed by Games-Howell tests to assess individual differences (P < 0.05). The experiments were repeated three times with similar results.

1258 Analysis of microscopic root cell damage by extraction solutions.

Transgenic Arabidopsis plants (Col-0) expressing the 35S:IBI1:YFP construct, encoding the cytoplasmic aspartyl-tRNA synthatase IBI1 with a C-terminal fusion to Yellow Fluorescent Protein (Luna et al., 2014; 35S::IBI1:YFP), were cultivated for two weeks (8.5/15.5 h light/dark at 21/19 °C, 120 µmol m⁻² s⁻¹ photons, 70% relative humidity) on half strength Murashige-Skoog agar plates, solidified with 0.8% Phytagel (Sigma-Aldrich, UK) and adjusted to pH 5.8. Roots were extracted carefully form agar plates, and incubated for 1 min in the acidified MeOH-containing extraction solutions (0, 50, 95% MeOH with 0.05% formic acid, v/v). As negative and positive controls for cell damage, roots were incubated for 1 min in double-distilled sterile water, or for 15 min in 100% MeOH, respectively. After incubation, roots were rinsed in double-distilled sterile water prior to epi-fluorescence microscopy analysis. Fluorescence was observed using an epi-fluorescence microscope (Olympus BX51, excitation filter BP 470/40 nm, barrier filter BP 525/50 nm). For each treatment, root systems form 12 different plants were analysed and photos were taken of representative samples. The experiment was performed four times with similar results.

1276 Analysis of impacts on soil and rhizosphere bacteria by extraction solutions.

Tubes (30 mL; n = 3) containing the sand:compost mixture (9:1 v/v) with or without 5week-old Arabidopsis were left untreated, or were bacterized by syringe injection with 5 mL of 10 mM MgSO₄, containing either YFP-expressing *P. simiae* WCS417r

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

(Zamioudis et al., 2014), or rifampicin-resistant B. subtilis 168 (Yi et al., 2016), to a final density of 10⁷ colony CFU g⁻¹. After 48 h, tubes were flushed with extraction solution (as detailed in Experimental procedures). Additional tubes were flushed with double-distilled sterile water (control), or 95% MeOH and left for 45 min (positive control for cell damage). Subsequently, 1 g of either control soil (without roots), or Arabidopsis roots plus adhering rhizosphere soil, was sampled from the tubes, suspended for 5 min into 50 mL of 10 mM MgSO₄, and centrifuged (5 min, 3,500 g). Pellets were re-suspended in 1 mL of 10 mM MgSO₄, and subjected to dilution plating onto Luria Broth (LB) agar medium supplemented with 5 µg mL⁻¹ of the anti-fungal cycloheximide. For testing impacts on culturable soil bacteria, LB agar contained no further antibiotics; for testing impacts on P. simiae WCS417r and B. subtilis 168, plates were supplemented with 5 μ g mL⁻¹ tetracycline + 25 μ g mL⁻¹ rifampicin and 50 µg mL⁻¹ rifampicin, respectively. Plates were kept for 24 - 48 h at 28 °C. Each biologically replicated sample was plated four times, after which the technical replicates were averaged to minimize confounding effects of heterogeneity in suspended pellets. Experiments were repeated twice with comparable results.

UPLC-Q-TOF mass spectrometry.

Untargeted metabolic profiling by UPLC-Q-TOF mass spectrometry (MS) was performed as described previously (Pétriacg et al., 2016b) using an ACQUITY ultra-high-pressure liquid chromatography (UPLC) system coupled to a SYNAPT G2 Q-TOF mass spectrometer with an electrospray (ESI) ionization source (Waters, UK). The system was controlled by MassLynx v. 4.1 software (Waters). Chromatographic separation of samples was carried out at a flow rate of 0.4 mL min⁻¹ using an ACQUITY UPLC BEH C18 column (2.1 × 50 mm, 1.7 µm, Waters) coupled to a C18

Pétriacq et al.

Rhizosphere metabolomics

1305	VanGuard pre-column (2.1 x 5 mm, 1.7 $\mu m,$ Waters). The mobile phase consisted of
1306	solvent A (0.05 %, formic acid v/v, in water) and solvent B (0.05 % formic acid v/v in
1307	acetonitrile) with the following gradient: 0 – 3 min 5 – 35 % B, 3 – 6 min 35 – 100 %
1308	B, holding at 100 % B for 2 min, 8 - 10 min, 100 - 5 % B. The column was
1309	maintained at 45 $^\circ\text{C}$ and the injection volume was 10 $\mu\text{L}.$ Between each condition, a
1310	blank was injected with 50% methanol (v/v) to clean the column. Sample runs in
1311	negative and positive ionization mode (ESI ⁻ and ESI ⁺) were separated by two
1312	consecutive injections with 50% methanol (v/v) to allow stabilization of the ionization
1313	modes. An ACQUITY PDA detector (Waters) was used to monitor the UV trace
1314	(range 205 – 400 nm, sampling rate 40 points s ⁻¹ , resolution 1.2 nm). MS detection
1315	of ions was operated in sensitivity mode by SYNAPT G2 (50 - 1200 Da, scan time =
1316	0.2 s) in both ESI ⁻ and ESI ⁺ , using a full MS scan (<i>i.e.</i> no collision energy) and
1317	applying the MS ^E function with a ramp in the transfer cell in elevated energy mode (5
1318	to 45 eV). The following conditions were applied for ESI ⁻ (capillary voltage - 3 kV,
1319	sampling cone voltage - 25 V, extraction cone voltage -4.5 V, source temperature
1320	120 °C, desolvation temperature 350 °C, desolvation gas flow 800 L h ⁻¹ , cone gas
1321	flow 60 L h^{-1}), and for ESI ⁺ (capillary voltage 3.5 kV, sampling cone voltage 25 V,
1322	extraction cone voltage 4.5 V, source temperature 120 °C, desolvation temperature
1323	350 °C, desolvation gas flow 800 L h ⁻¹ , cone gas flow 60 L h ⁻¹). Prior to analyses, the
1324	Q-TOF was calibrated by infusing a sodium formate solution. Accurate mass
1325	detection was ensured by infusing the internal lockmass reference peptide leucine
1326	enkephalin during each run.

1328 Statistical analysis of MS data.

Page 53 of 86

Pétriacq et al.

The Plant Journal

Prior to multivariate analyses, the XCMS R package (v. 3.1.3; Smith et al., 2006) was used to align and integrate raw UPLC-Q-TOF peaks, to correct for total ion current (TIC) and median fold-change. All statistical analyses were performed with median-normalized, cube-root-transformed and Pareto-scaled data, using MetaboAnalyst software (v. 3.0, http://www.metaboanalyst.ca; Xia et al., 2015). Three-dimensional principal component analyses (3D-PCA) were based on the first three principal components (PCs) that explain most variation of the dataset. Supervised partial least square discriminant analyses (PLS-DAs) were conducted to quantify discriminative power between soil types and extraction solutions. PLS-DA models were validated by correlation (R^2) and predictability (Q^2) parameters for both ESI^{+} and ESI^{-} modes (R² > 0.94 and Q² > 0.59, respectively). Numbers of total ions were obtained from XCMS output datasets. To quantify metabolic differences between rhizosphere and control soil, volcano plots were constructed at a statistically significant threshold of P < 0.01 (Welch's *t*-test) and a fold-difference threshold of 2, using MetaboAnalyst (v. 3.0, http://www.metaboanalyst.ca; Xia et al., 2015). To obtain putative identities of a combined set of ions from all three extraction solutions that are either enriched in Arabidopsis soil, or its corresponding control soil, the top-20 ranking ions from each volcano plot were selected by fold-change (above 2 or below -2) and P value, followed by an ANOVA (P < 0.01) for statistical differences between all soil/extraction solution combinations, using a Benjamini-Hochberg false discovery rate (FDR) correction for multiple hypothesis testing (Hochberg and Benjamini, 1990). To obtain putative identities from the 50% MeOH extraction solution that are either enriched in the maize rhizosphere, or corresponding control soil, the top-50 ranking ions from each volcano plot (ESI⁺ and ESI⁻) were selected. For both cultivation systems, ions were corrected for adducts

Pétriacq et al.

Rhizosphere metabolomics

and/or isotopes, using MarVis (v. 1.0; http://marvis.gobics.de; tolerance: m/z = 0.1Da, RT = 10 s; Kaever et al., 2012). Putative metabolites were identified by referencing the final set of detected accurate m/z values against publicly available chemical databases using METLIN, PubChem, MassBank, Lipid Bank, ChemSpider, Kegg, AraCyc and MetaCyc database, as documented in several studies (Kaever et al., 2009; Kaever et al., 2012; Gamir et al., 2014a, 2014b; Pastor et al., 2014; Pétriacq et al., 2016a, 2016b). METLIN (https://metlin.scripps.edu) was used to determine accuracy and chemical formulae for the putative compounds. PubChem (https://pubchem.ncbi.nlm.nih.gov/) was used to check the predicted pathway classification. In cases where multiple ions could be annotated to the same putative metabolite (due to different adducts and ionization modes; Tables S1 and S2), they were counted additively to the metabolite class presented in the pie-charts of Figures 6 and 7.

1368 Experimental system for profiling distant rhizosphere fractions.

To investigate whether the chemical influence of the rhizosphere extends beyond soil that is closely associated with roots, maize plants were grown in mesh bags, which allowed for physical separation of root systems from the distal soil in the periphery of the growth tube. Bags were constructed from a nylon mesh (35 µm diameter holes), folded over and heat sealed to produce bags (6 cm x 11 cm. approximate diameter when filled = 3.5 cm). These bags were filled with 85 cm³ of a mixture of 75:25 (v/v) agricultural soil:perlite, as used previously for maize experiments. Each mesh bag was placed into the centre of the 150-mL plastic tube (11 cm high and 5 cm diameter; Starlab) with a miracloth sheet covering the bottom hole of the tube. Seventy cm³ of the same soil substrate was used to fill the

Page 55 of 86

Pétriacq et al.

The Plant Journal

Rhizosphere metabolomics

peripheral space between the mesh bag and tube wall. A total of 24 pots were set up in this manner. Pre-germinated maize seeds (W22) were planted into the bags of 12 tubes. The other 12 tubes were left unplanted to serve as plant-free controls. All tubes were wrapped in foil and covered with black plastic beads to prevent algal growth. Sixty mL of distilled water was added to each tube to saturate the soil with water before seeds were planted, after which all pots were transferred to a growth cabinet with the following conditions: 16/8 h light/dark with an average light intensity of 140 μ mol m⁻² s⁻¹ at the top of the collection tubes, a relative humidity of 60%, and a constant temperature of 20 °C. Soil metabolites were extracted from the different soil fractions after 24 days of growth. To collect metabolites from the distal soil fractions, black beads were removed, and mesh bags were carefully removed from half of the pots (6 tubes with maize and 6 without). The remaining distal soil in the tube (*i.e.* the soil that had been outside the bag) was tapped to the bottom of the 150-mL tubes and extracted by applying 25 mL of acidified 50% (v/v) MeOH to the top of the soil. The solution was flushed through the tube by applying pressure for 1 min through a modified 150-mL tube lid containing a 50-mL syringe, until ~10 mL of solution was collected from the base of the tube into new 50-mL tubes. To collect metabolites from the whole soil fractions, plastic beads were removed from the remaining 12 pots and maize shoots were cut from the 6 that contained plants. Subsequently, 50 mL of acidified 50% MeOH (v/v) was applied to the top of the tube. keeping the mesh bags in place. The solution was flushed through by applying pressure for 1 min using the modified lid, as previously described, resulting in a least 10 mL of collection volume at the base of the tube. All extracts were centrifuged to pellet soil residues (5 min, 3,500 g), after which 8 mL of supernatant were transferred into a new 15-mL centrifuge tube and flash-frozen in liquid nitrogen. All

Pétriacq et al.

Rhizosphere metabolomics

samples were freeze-dried for two days, after which dried material was re-suspended in 500 µL of methanol: water: formic acid (50: 49.9: 0.1, v/v/v), sonicated at 4 °C for 20 min, vortexed, transferred into 2-mL microtubes and centrifuged (15 min, 14,000 g, 4 °C). Final supernatants (180 µL) were transferred into glass vials containing a glass insert before injection through the UPLC system. UPLC-Q-TOF analysis was conducted in ESI⁻ as described above. For DIMBOA targeted quantitation, a purified and NMR-verified standard (Ahmad et al., 2011) was run alongside the samples. Metabolomics data were normalised for soil amount (n = 6), and subsequent analysis performed with MetaboAnalyst (v. 3.0), as described above (*i.e.* median normalisation, cube-root transformation, Pareto scaling).

Figure 1. Experimental growth system and analytical approach for comprehensive chemical profiling of non-sterile rhizosphere soil.

(a) 1. Collection tubes (30 mL) with bottom holes (7 mm) covered by miracloth were filled with a sand:compost mixture 9:1 (v/v) and wrapped in aluminium foil to prevent excess algal growth. Individual Arabidopsis plants (Col-0) were grown for 5 weeks in tubes. Additional tubes containing control soil without plants were maintained under similar conditions. 2. After application of 5 mL of extraction solution, metabolite samples were collected for 1 min, centrifuged and freeze-dried. 3. Concentrated samples were analysed by ultra-high-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF). 4. Multi- and univariate statistical methods were used to determine qualitative and quantitative differences between extracts from control soil and Arabidopsis soil. Selection of ions by statistical difference and fold-change between soil types enabled putative identification of metabolites that were enriched in non-sterile rhizosphere soil.
(b) Photographs of the experimental system. Top: tubes after 4.5 weeks of growth. Bottom: tubes after 3 weeks of growth taped onto petridishes to prevent cross contamination of metabolites and microbes.

Figure 2. Rhizosphere effect by Arabidopsis in the cultivation system based on 16S rRNA gene sequencing.

Shown are comparisons of bacterial communities between samples from control soil (without roots) and root samples plus adhering rhizosphere soil.

(a) Principal coordinate analysis of OTUs in root + rhizosphere samples (red) and control soil samples (green). Ordinations were performed using weighted Unifrac distances. PERMANOVA analysis showed that the root and control soil samples differed significantly (P = 0.023).

(b) OTUs that differ in relative abundance between root + rhizosphere samples and control soil samples. OTUs with positive fold changes are more abundant in the root plus rhizosphere samples than control samples. Results are plotted by family for OTUs that showed a significant difference in abundance as calculated using DESeq2, corrected for false discovery. Only OTUs which have a mean count \ge 20 are shown for clarity. NA, taxonomy not available.

SUBMITTED MANUSCRIPT

Figure 3. Effects of methanol (MeOH)-containing extraction solutions on electrolytes leakage from Arabidopsis roots (a) and viability of soil microbes (b, c).

(a) Quantification of electrolytes leakage from Arabidopsis roots after incubation for 1 min in acidified extraction solutions containing 0%, 50% or 95% MeOH (v/v) and 0.05% formic acid (v/v). The negative control treatment (-ctrl) refers to intact roots that had not been exposed to any extraction solution. As a positive control treatment for cell damage, wounding was inflicted prior to incubation by cutting roots with a razor blade. Shown are average levels of conductivity ($n = 4, \pm$ SEM), relative to the maximum level of conductivity after tissue lysis (set at 100%). Statistically significant differences between treatments were determined by a Welch's F test for ranked data (*P* values indicated in the upper left corner), followed by Games-Howell post-hoc tests (P < 0.05; different letters indicate statistically significant differences). (**b**-c) Effects of MeOH-containing extraction solutions on viability of soil (**b**) and rhizosphere (**c**) microbes. Shown are average values of colony forming units (CFU) per g of soil for culturable soil bacteria, *Bacillus subtilis* 168 and *Pseudomonas simiae* WCS417r from extraction solution-treated soils ($n = 3, \pm$ SEM). Asterisks indicate statistically significant differences between regative control (water-flushed soil) and the corresponding treatment (P < 0.05, Studer **Comparison Parison Parison**

showed statistically significant differences.

Figure 4. Global differences in metabolite profiles between extracts from control soil ('soil') and Arabidopsis soil ('plant').

Shown are multivariate and hierarchical cluster analyses of mass spectrometry data from extracts with different extraction solutions (indicated by % MeOH). Ions (*m/z* values) were obtained by UPLC-Q-TOF analysis in both positive (ESI⁺) and negative (ESI⁺) ionization mode. Prior to analysis, data were median-normalized, cube-root-transformed and Pareto-scaled.

(a) Unsupervised three-dimensional principal component analysis (3D-PCA). Shown in parentheses are the percentages of variation explained by each principal component (PC).

(b) Cluster analysis (Pearson's correlation).

(c) Supervised partial least square discriminant analysis (PLS-DA). R² and Q² values indicate correlation and predictability values of PLS-DA models, respectively.

52

53

54

55

56

57

58 59 60

Figure 5. Quantitative differences in metabolite abundance between extracts from control soil and Arabidopsis soil.

(a) Volcano plots expressing statistical enrichment of ions (Welch's t-test) as a function of fold-difference in control soil (red; 'soil') and Arabidopsis soil (green; 'rhizosphere'). Data shown represent positive (ESI+) and negative (ESI-) ions from extractions with different solutions (indicated by % MeOH). Cut-off values were set at P < 0.01 (-Log10 = 2) and fold-change > 2 (Log2 = 1).

(b) Venn diagrams showing overlap in ions (cations and anions combined) that are significantly different between control and Arabidopsis soil samples (left panel; P < 0.01, Welch's t-test; without fold-change threshold), enriched in extracts from Arabidopsis soil (middle panel; > 2-fold enrichment to soil at P < 0.01, Welch's t-test), and enriched in control soil (right panel; < 2-fold enrichment to rhizosphere at P < 0.01, Welch's t-test).

Figure 6. Composition of putative metabolite classes enriched in control soil (left) or Arabidopsis soil (right).

Differentially abundant ions were selected from the top 20-ranking ions of each volcano plot (Figure 5a) and filtered for statistical significance between all soil/extraction solution combinations (ANOVA with Benjamini-Hochberg FDR; P < 0.01). The resulting 76 rhizosphere-enriched ions and 75 control soil-enriched ions were corrected for adducts and/or C isotopes (tolerance: m/z = 0.1 Da and RT = 10 s), and cross-referenced against publicly available databases for putative identification. A comprehensive table of all rhizosphere- and soil-enriched markers is presented in Supplemental Table S1. Multiple ions putatively annotating to the same metabolite were counted additively towards the metabolite classes in the pie-charts. Putative metabolites that unlikely accumulate as natural products in (rhizosphere) soil (e.g. synthetic drugs, mammalian hormones) were not included in the final selection presented. Miscellaneous: putative metabolites that do not belong to any of the other metabolite classes listed. Unknown: ion markers that could not be assigned to any known compound.

3

4

5 6

7

8 9

The experimental system for extracting soil chemistry was based on 50-mL collection tubes filled with a mixture of agricultural soil from arable 47 farmland and perlite (75:25, v/v). Samples were extracted with the 50% MeOH (v/v) solution 17 days after planting.

48 (a) Quantification of maize root damage after direct exposure to the extraction solutions. Five day-old maize roots were incubated for 1 min in 49 acidified extraction solutions containing 0%, 50% or 95% MeOH (v/v) and tested for electrolytes leakage by conductivity. For details, see legend to Figure 3a. Shown are average levels of conductivity (n = 4, ± SEM), relative to the maximum level of conductivity after tissue lysis (set at 50 100%). Statistically significant differences between treatments were determined by a Welch's F test for ranked data (P values indicated in the 51 upper left corner of each panel), followed by Games-Howell post-hoc tests (P < 0.05; different letters indicate statistically significant differences). 52 (b) Unsupervised 3D-PCA, showing global differences in metabolic profiles between control soil (red) and maize soil (green). Shown are data from extracts with the 50% MeOH (v/v) extraction solution. For further details, see legend to Figure 4.

53 (c) Volcano plots expressing statistical enrichment of ions (Welch's t-test) as a function of fold-difference in control soil (red; 'soil') and maize soil 54 (green; 'rhizosphere'). Cut-off values were set at P < 0.01 (-Log10 = 2) and fold-change > 2 (Log2 = 1).

(d) Relative composition of putative metabolite classes enriched in enriched in control soil (left) or maize soil (right). Differentially abundant 55 metabolites were selected from the top 50-ranking ions of each volcano plot (ESI+ and ESI; c), corrected for adducts and/or C isotopes 56 (tolerance: m/z = 0.1 Da and RT = 10 s), and cross-referenced against publicly available databases for putative identification. A comprehensive 57 table of all rhizosphere- and soil-enriched markers is presented in Supplemental Table S2. Putative metabolites that unlikely accumulate as natural products in (rhizosphere) soil (e.g. synthetic drugs, mammalian hormones) were not included in the final selection presented. For further 58 details, see legend to Figure 6. 59

Supplemental Figure S1. Rarefaction curves of detected OTUs.

Shown are curves after removal of singletons for replicate root + rhizosphere samples (green) and control soil samples (red).

Supplemental Figure S2. Relative abundance (%) of selected families in control soil samples ('Soil'; red) and root + rhizosphere samples ('Root'; green) from the Arabidopsis growth system.

49
 Shown are families containing OTUs with relative abundances > 2% in one or more samples. Each bar represents an individual biological replicate. NA, taxonomy not available.
 51

Supplemental Figure S3. Model of expected impacts of solvent polarity on the extraction of soil metabolites.

(a) Examples of solvent polarities and their impact on the type of metabolites extracted. Polarity index of water, methanol (MeOH) and hexane are shown within parentheses.
(b) Hypothesized impact of solvent polarity on cell damage of plant roots and soil microbes.

SUBMITTED MANUSCRIPT

35S::IBI1-YFP

Transgenic roots producing the cytoplasmic aspartyl-tRNA synthase IBI1 fused to YFP (355::IBI1:YFP; Luna *et al.*, 2014) were incubated for 1 min in water or acidified extraction solutions with increasing MeOH concentration (0, 50 or 95% MeOH, v/v + 0.05% formic acid, v/v). After incubation, roots were then rinsed in sterile water, and analysed for YFP fluorescence. Photographs show representative examples from observations of at least 12 roots for each treatment. As a positive control for cell damage, roots were incubated in 100% MeOH for 15 min. The experiment was performed four time with similar results. Scale bars: 50 μ m. **SUBMITTED MANUSCRIPT**

Supplemental Figure S5. Reproducibility of differences in metabolite profiles between control and Arabidopsis soil over three independent experiments.

Shown are unsupervised three-dimensional principal component analyses (3D-PCA) from extracts by the different solutions (indicated by % MeOH). Ions (m/z values) were obtained by UPLC-Q-TOF in positive (ESI+, left panels) and negative (ESI-, right panel) ionization modes. Analysis was carried out with MetaboAnalyst (v. 3.0), after median normalization, cube-root transformation and Pareto scaling of data. In parentheses are shown the percentages of variation explained by each principal component.

SUBMITTED MANUSCRIPT

Supplemental Figure S6. Binary PLS-DA analysis of metabolite profiles from control soil and Arabidopsis soil for different extraction solutions (indicated by % MeOH).

lons (*m/z* values) were obtained by UPLC-Q-TOF analysis in both positive (ESI⁺, left panels) and negative (ESI⁻, right panel) ionization mode. Prior to analysis, data were median-normalized, cube-root-transformed and Pareto-scaled. All R² (correlation) and Q² (predictability) values of PLS-DA models were above 0.94 and 0.59, respectively.

Supplemental Figure S7. Quantitative differences in detected ions (UPLC-Q-TOF) between extracts from control and Arabidopsis soil.

(a) Total numbers of ions (top) detected in Arabidopsis soil and control soil after extraction with the different solutions (indicated by % MeOH). Venn diagrams (bottom) show overlap in total ion numbers between extracts for each extraction solution.
(b) Venn diagrams showing overlap in cations (ESI+) and anions (ESI+) that are statistically different between control and Arabidopsis soil (left panel; *P* < 0.01, Welch's *t*-test), that are enriched in extracts from Arabidopsis soil (middle panel; > 2-fold enrichment to soil at *P* < 0.01, Welch's *t*-test), and that enriched are in extracts from control soil (right panel; < 2-fold enrichment to soil at *P* < 0.01, Welch's *t*-test).

Supplemental Figure S8. Relative quantities of selected benzoxazinoid ions in extracts from maize soil and corresponding control soil.

Selective ions (*m*/*z*) of HBOA (2-hydroxy-4H-1,4-benzoxazin-3-one), DIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one) and 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one were detected on the basis of retention time and *m*/*z* value, using UPLC-Q-TOF (ESI⁺, Δ ppm = 0). Charts indicate means of relative abundances (*n* = 5, ± SEM). Levels of statistical significance are indicated in red above the corresponding bars (Student's *t*-test).
The Plant Journal

(lower panel; long distance influence), illustrating that the rhizosphere extends beyond soil that is closely associated with roots. (c) Targeted quantification of DIMBOA by UPLC-Q-TOF. Shown are average ion intensities (± SEM; n = 6), normalised by soil weight. Letters

indicate statistically significant differences between soil types (Student's t-test, P < 0.05).

The Plant Journal

Supplemental Table S1. Putative identification of Arabidopsis rhizosphere- and control soil-enriched metabolic markers 1

¹ Percentages indicate relative MeOH contents of the extraction solutions.

² P values are derived from ANOVA followed by false discovery rate correction (Benjamini-Hochberg). 2 ³ Retention times (RT) and accurate *m*/z values, detected by UPLC-Q-TOF in negative (-) or positive (+) ion mode.

3 4 Predicted parameters from the METLIN database using the detected accurate m/z.

⁵ Putative metabolites and their corresponding pathways were validated by information from the PubMed chemical database. 4 ⁶ Putative metabolites that unlikely accumulate in (rhizosphere) soil.

RHIZOSPHERE -ENRICHED

5	Sample	Extraction solution ¹	P value ²	RT (min) ³	Detected m/z ³	lon mode ³	Predicted mass ⁴	Adduct ⁴	∆ppr	m ⁴ Putative Compound ⁴	Predicted Formula ⁴	Putative Pathway ⁵	soil- or plant-derived ⁶
6		0%	5.9E-05	7.4	336.117	-	337.131	[M-H]-	21	1 (S)-cis-N-methylstylopine	C20H19NO4	Alkaloids	
-		95%	8.2E-03	1.1	657 315	-	567.189	[M+FA-H]-	30	Disinomonino	C33H29NU8	Alkaloids	
1	-	0%	1.8E-05	5.9	116.052	+	151.063	IM+H-2H2O1+	12	2 2-Phenylalycine	C8H9NO2	Amino acids	
0		95%	1.2E-03	5.0	265.106	+	264.104	[M+H]+	21	1 Thiamine	C12H16N4OS	Amino acids	
0		0%	7.5E-03	6.9	109.039	-	110.048	[M-H]-	15	5 Imidazole-4-acetaldehyde	C5H6N2O	Amino acids	
9		50%	9.5E-04	7.2	414.322	+	413.314	[M+H]+	1	N-stearoyl glutamic acid	C23H43NO5	Amino acids	
	-	95%	2.4E-03	1.3	668.121		669.144	[M-H]-	23	3 Enterochelin	C30H27N3O15	Amino acids	
10		50%	3.1E-04 6.5E-05	1.4	580.656	-	599.686	[M-H2O-H]- [M+Na-2H]-	19	Galcium trimetaphosphate	Ca3H6O18P6	Calcium source from Plants	
4.4	-	0%	2.6E-03	9.3	776.177	+	775.195	[M+H]+	32	2 Reduced coenzyme F420	C29H38N5O18P	Carbohydrates	
11	-	50, 95%	6.0E-04	7.3	383.156	-	384.163	[M-H]-	0	2,3-Butanediol apiosylglucoside	C15H28O11	Flavonoids	
12		50%	5.2E-05	1.3	699.141	-	654.143	[M+FA-H]-	0	Tamarixetin 5-glucoside-7-glucuronide	C28H30O18	Flavonoids	
12		50%	8.1E-04	1.2	727.147		728.180	[M-H]-	35	5 Primflaside	C31H36O20	Flavonoids	
13		0%	9.5E-04	9.0	479.275	+	478.272	[M+H]+	8	3-Geranyl-4,21,41,61-tetrahydroxy-5-prenyldihydrochalcone	C30H38O5	Flavonoids	Unlikely
11		50%	1.1E-03 1.9E-04	1.2	665 136		666 143	[M-H]-	25	Cvanidin 3-(6\'\'-malonylsambubioside)	C29H30O18	Flavonoids	
14	-	0%	4.3E-03	9.4	452.924		453.942	[M-H]-	24	4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid	C16H10N2O6S4	Isothiocyanates	Unlikely
15	-	0%	2.1E-06	8.1	347.327	+	364.334	[M+H-H2O]+	12	2 5,9-tetracosadienoic acid	C24H44O2	Lipids	*
10		0%	4.8E-03	6.7	594.585	+	593.575	[M+H]+	5	Ceramide	C38H75NO3	Lipids	
16		0%	4.4E-03	9.1	664.458	+	663.448	[M+H]+	4	Phosphoserine	C34H66NO9P	Lipids	
47		50%	6.0E-07 3.7E-03	1.3	816.548	-	817.562	[M-H]- [M+H]+	38	Phosphatidylethanolamine B Debydroergosterol	C28H42O	Lipids	
17		50%	3.1E-03	6.4	420.293	+	437.291	IM+H-H2O1+	12	Phosphatidylethanolamine	C21H44NO6P	Lipids	
18		95%	2.0E-05	7.7	441.298	+	440.290	[M+H]+	1	26,26,26-trifluoro-25-hydroxy-27-norcholecalciferol	C26H39F3O2	Lipids	Unlikely
10		50%	6.1E-04	1.6	480.787	-	499.803	[M-H2O-H]-	4	Butter acids	C15H8Cl8O2	Lipids	
19		50%	1.6E-03	7.2	485.382	+	520.392	[M+H-2H2O]+	6	Ginsenoyne A linoleate	C35H52O3	Lipids	
00		50%	3.5E-03	9.1	503.461	+	538.460	[M+H-2H2O]+	27	7 Diacylglycerol	C33H62O5	Lipids	
20		00% 05%	3.5E-04 3.8E-03	9.3	672 565	+	673 549	[M+H-H2O]+ [M-H]-	21		C38H75NO8	Lipids	
21		50%	8.7E-04	9.2	763.519	+	762.520	[M+H]+	10	D Phosphatidic acid	C44H75O8P	Lipids	
21		0%	3.8E-06	9.0	771.658	-	772.658	[M-H]-	9	Triacylglycerol	C49H88O6	Lipids	
22		95%	1.4E-03	2.8	809.600	-	810.614	[M-H]-	8	Phosphatidic acid	C47H87O8P	Lipids	
~~		95%	6.0E-07	1.3	816.548	-	817.562	[M-H]-	8	Phosphatidylethanolamine	C47H80NO8P	Lipids	
23		0%	3.1E-03	1.4	834.524	-	835.536	[M-HJ-	6	Phosphoserine	C46H78NO10P	Lipids	
24		95%	5.2E-03	67	1023 795	-	1022 830	[M+H]+	41	1 Triacylolycerol	C68H110O6	Lipids	
24	Dhizoonhoro	95%	1.9E-03	1.5	1057.815	-	1012.846	[M+FA-H]-	27	7 Triacylglycerol	C67H112O6	Lipids	
25	Rilizosphere	95%	< E-09	6.3	265.182	+	264.173	[M+H]+	8	12-Oxo-2,3-dinor-10,15-phytodienoic acid	C16H24O3	Lipids/JA metabolism	
~~		0%	7.8E-04	1.7	92.927	-	111.948	[M-H2O-H]-	30	0 2,2-Dichloroacetaldehyde	C2H2Cl2O	Miscellaneous	Unlikely
26		0%	4.8E-03	1.2	306.918	+	305.910	[M+H]+	1	Mitobronitol	C6H12Br2O4	Miscellaneous/Alcohol	Unlikely
27		0.50.05%	2.0E-03	1.1	338.812	-	357.844	[M-H2O-H]-	41	I 2,24,45,5\-Hexachiorobiphenyi		Miscellaneous/Aromatics	Unlikely
21		50%	2.8E-03	1.1	380.818	-	359.837	[M+Na-2H]-	15	5 Haloprogin	C9H4Cl3IO	Miscellaneous/Aromatics	
28		50%	5.4E-06	1.5	538.675	-	493.689	[M+FA-H]-	21	1 Decachlorobiphenyl	C12Cl10	Miscellaneous/Aromatics	Unlikely
20		50%	< E-09	1.9	203.025	+	202.011	[M+H]+	31	1 4-carboxy-2-hydroxy-cis,cis-muconic acid	C7H6O7	Miscellaneous/Carboxylic acids	Unlikely
29		0, 50%	1.9E-03	1.1	216.907	-	235.932	[M-H2O-H]-	30	2-Bromomaleylacetate	C6H5BrO5	Miscellaneous/Carboxylic acids	Unlikely
20		0%	1.3E-04	1.4	318.838	-	337.863	[M-H2O-H]-	19	1,2,3,7,8-Pentachlorodibenzofuran Afletavia B1 ava 8.0 especiale CSH	C12H3Cl5O	Miscellaneous/Dioxins	Unlikely
30		95%	1.1E-03	4.6	1051 437		1006 436	[M+FA-H]-	2	Oxytocin	C43H66N12O12S2	Miscellaneous/Pentide hormones	Unlikely
31		0%	3.2E-03	6.8	1126.544	+	1125.501	[M+H]+	31	1 [Tyr(PO3H2)4]-Angiotensin II	C50H72N13O15P	Miscellaneous/Peptide hormones	Unlikely
		0%	6.9E-05	2.0	181.994	+	217.006	[M+H-2H2O]+	3	PROPANIL	C9H9Cl2NO	Miscellaneous/Pesticides	Unlikely
32	_	0%	7.8E-03	4.7	291.058	-	270.089	[M+Na-2H]-	20	0 4-O-Methylpinosylvic acid	C16H14O4	Phenylpropanoids	
22	-	95%	4.3E-03	1.2	646.088		665.125	[M-H2O-H]-	28	3 NADH	C21H29N7O14P2	Pyridine nucleotides	Lie Bies ha
33	-	95%	3.0E-05	9.8	74 781	+	395.986	[M+H-2H2O]+	14	4 Sesquiterpene	C15HZ3BIZCI	Linknown	Unlikely
34		0%	6.7E-05	9.3	87.183	+						Unknown	
<u> </u>		50%	7.8E-03	1.4	218.880	-						Unknown	
35		50%	1.5E-05	9.3	225.793	+						Unknown	
36		0%	8.6E-04	1.2	262.896	-						Unknown	
30		0 50 95%	3.3E-03	1.8	279.900	+						Unknown	
37		95%	5.2E-03	1.7	400.792	-						Unknown	
~~		95%	2.6E-05	6.0	430.389	+						Unknown	
38		0%	4.1E-05	4.5	444.801	-						Unknown	
20		50%	2.9E-05	1.3	470.700	-						Unknown	
39		50, 95%	2.2E-04	1.6	518.751	-						Unknown	
40		50%	1.6E-03	1.1	558,693	+						Unknown	
		95%	5.8E-03	7.6	598.899	+						Unknown	
41		50%	2.7E-06	1.2	618.651	-						Unknown	
10		0%	9.5E-03	2.8	620.761	-						Unknown	
42		0%	6.6E-03	9.4	766.946	+						Unknown	
43		95%	8.4E-07	9.3	1067.185	+						Unknown	
		95%	5.5E-04	9.3	1119.101	+						Unknown	
44 -								-					
15								S	UB	MITTED MANUSCRIPT			
40													
46													

The Plant Journal

1

2													
3													
4										SOIL-ENRICHED			
5 -	Sample	Extraction colution ¹	R value ²	PT (min) ³	Detected m/r ³	lon modo	Bradiated mass ⁴	Adduct ⁴	A	4 Butative Commound ⁴	Prodicted Formula ⁴	Putativa Pathway ⁵	acil or plant derived ⁶
6	oumpie	50%	< E-13	1.2	130.086	-	131.095	[M-H]-	10	L-Isoleucine	C6H13NO2	Amino acids	son- or plant-derived
0		50%	1.89E-04	1.0	216.035	+	215.019	[M+H]+	38	O-Phospho-4-hydroxy-L-threonine	C4H10NO7P	Amino acids	
7		50% 50%	5.77E-05 1.12E-04	3.0 1.4	284.061	+	280.092	[M+H-2H2O]+ [M+H]+	28	N2-Acetyl-L-aminoadipyl-δ-phosphate	C10H20N2O352 C8H14NO8P	Amino acids	
8		50%	1.41E-07	1.3	1103.693	+	215.986	[M+H]+	46	S-Methyl-3-phospho-1-thio-D-glycerate	C4H9O6PS	Carbohydrates	
õ		95%	2.36E-03	6.1 7.6	335.033	+	334.032 570.289	[M+H]+ [M+H-H2O]+	20	Heptahydroxyflavone 2-Q-(beta-D-galactopyranosyl-(1-56)-beta-D-galactopyraposyl) 2S 3R-dibydroxytridecapoic acid	C15H10O9 C25H46O14	Flavonoids Linids	Unlikely
9		95%	6.51E-08	8.0	553.513	+	552.491	[M+H]+	27	Linoleyl arachidonate	C38H64O2	Lipids	onintory
10		50%	2.05E-05	4.9	620.535	+	619.530	[M+H]+	3	Diacylglycerol	C39H71D5O5	Lipids	
11		95%	5.33E-03 5.36E-03	9.4	172.063	+	173.069	[M+H]+ [M-H]-	43	2.6-Piperidinedicarboxylic acid	C7H11NO4	Miscellaneous	
11		0, 50%	6.49E-06	0.8	184.926	-	185.932	[M-H]-	8	4-Bromo-3,5-cyclohexadiene-1,2-dione	C6H3BrO2	Miscellaneous	Unlikely
12		0%	3.48E-03 2.64E-03	7.9 9.4	296.181 495.013	+	331.194	[M+H-2H2O]+ [M+H]+	27	Currayanine Sodium cumeneazo-R-naphthol disulfonate	C23H25NO C19H16N2Na2O7S2	Miscellaneous	Unlikely
13		0%	7.92E-07	9.3	163.943	÷	198.948	[M+H-2H2O]+	47	Bronopol	C3H6BrNO4	Miscellaneous/Antimicrobials	Unlikely
15		95%	3.16E-03	9.4	1088.122	+	1123.158	[M+H-2H2O]+	21	Mycolic acid	C77H150O3	Miscellaneous/Antimicrobials	Unlikely
14		50% 0.95%	5.65E-13	0.8	148.043	+	145.020	[M+H-2H2O]+ [M+H]+	2	3,4-Denydrotniomorpholine-3-carboxylate	C5H9NO2S	Miscellaneous/Carboxylic acids	
15		0, 50%	7.86E-06	1.1	346.099	+	345.091	[M+H]+	ō	Clopamide	C14H20CIN3O3S	Miscellaneous/Diuretics	Unlikely
10		50%	3.85E-03	1.7	346.096	+	345.091	[M+H]+	7	Clopamide	C14H20CIN3O3S	Miscellaneous/Diuretics	Unlikely
16		95%	1.44E-03	2.9	303.049	-	304.058	[M-H]-	4	Brompheniramine (monodemethylated)	C15H17BrN2	Miscellaneous/Histamines	Unlikely
17		0, 50%	1.44E-04	0.8	183.928	-	184.934	[M-H]-	8	lodoacetamide	ICH2CONH2	Miscellaneous/Lipids	Unlikely
10		95%	1.67E-04 8.26E-03	8.6 1.2	584.329 234.048	-	585.345 269.061	[M-H]- [M+H-2H2O]+	15	Janthitrem B 2-(p-Methoxynbenyl)-3-(m-chlorophenyl)acrylopitrile	C37H47NO5 C16H12CINO	Miscellaneous/Mycotoxins Miscellaneous/Nitriles	Unlikely
18		50%	1.63E-05	0.8	199.045	+	198.039	[M+H]+	5	Nitrofurazone	C6H6N4O4	Miscellaneous/Nitrofurans	Unlikely
19		95%	< E-13	1.7	288.046	-	289.054	[M-H]-	1	Isocarbophos	C11H16NO4PS	Miscellaneous/Pesticides	Unlikely
20		50% 95%	4.74E-04 2.65E-04	1.4 7.1	303.871 775.262	-	258.876 774.247	[M+FA-H]- [M+H]+	10	7.8-Dihydromethanopterin	C6HCI4NO2 C30H43N6O16P	Miscellaneous/Pesticides Miscellaneous/Pteridines	Unlikely
20		0%	5.61E-03	7.7	549.916	+	584.937	[M+H-2H2O]+	14	HL07	C15H17I2N5O4	Miscellaneous/Pyridines	
21		95%	1.64E-04	4.2	596.085	-	551.106	[M+FA-H]-	32	11-O-Demethylpradimicinone II	C27H21NO12	Miscellaneous/Quinones	Unlikely
22		0%	1.88E-03 5.20E-03	9.3 7.8	405.185	+	404.175	[M+H]+ [M+H]+	2	Lithocholic acid sulfate	C23H29CIO4 C24H40O6S	Miscellaneous/Steroids	Unlikely
22		0%	1.66E-04	1.1	370.066	+	369.059	[M+H]+	2	4-Pyridinol, 2-[[[5-(difluoromethoxy)-1H-benzimidazol-2-yl]sulfinyl]methyl]-3-methoxy-	C15H13F2N3O4S	Miscellaneous/Sulfoxides	Unlikely
23		0, 50, 95%	2.37E-06	0.9	210.949	-	211.960	[M-H]-	18	Thiotropocin S. Mathul 2 phospha 1 this D alwayste	C8H4O3S2	Miscellaneous/Tropolones	Unlikely
24		50%	2.61E-04	3.3	263.094	+	262.089	[M+H]+	8	Thiamine aldehyde	C12H14N4OS	Organic acids	
2.	Control soil	0, 50%	2.26E-07	0.8	182.929	-	183.935	[M-H]-	5	Arsonoacetate	C2H5AsO5	Organoarsonic acids	Unlikely
25		0%	4.39E-04 6.17E-07	6.5 9.4	321.094	+	1084.067	[M+H]+ [M+H-2H2O1+	8 25	Punicalagin	C48H28O30	Phenylpropanoids Phenylpropanoids	Unlikely
26		50%	6.61E-03	2.2	1117.153	-	1072.183	[M+FA-H]-	25	CoA-glutathione	C31H51N10O22P3S2	Purines	
27		50%	1.50E-08	9.3	349.184	+	348.178	[M+H]+	4	cis-10-Hydroxylinalyl oxide 7-glucoside	C16H28O8	Terpenoids	
21		0, 50%	2.61E-05	1.6	61.988	-						Unknown	
28		0, 50%	1.78E-05	1.0	123.941	+						Unknown	
29		95%	3.03E-05 3.15E-04	1.1	165.936	-						Unknown	
20		95%	5.05E-04	2.0	175.968	-						Unknown	
30		0, 95%	7.65E-03	0.8	192.957	-						Unknown	
31		0, 50%	4.24E-03	1.8	209.948	-						Unknown	
00		0, 50%	5.78E-06	0.9	211.946	-						Unknown	
32		95% 95%	7.37E-04 4.85E-04	9.7	245.894 261.870	-						Unknown Unknown	
33		95%	7.08E-04	1.3	299.842	-						Unknown	
24		95%	3.80E-03	5.4	307.150	+						Unknown	
34		95%	1.00E-04	4.9	325.894	+						Unknown	
35		0%	3.88E-03	1.3	351.873	-						Unknown	
36		95%	1.72E-04 1.40E-04	1.4 1.4	379.788	-						Unknown	
50		0, 50%	1.80E-05	1.3	414.120	+						Unknown	
37		95%	3.50E-03	1.5	443.807	-						Unknown	
38		50% 50%	8.21E-06 1.70E-07	1.1	445.806	-						Unknown	
00		95%	3.03E-05	9.4	741.928	-						Unknown	
39		95%	5.54E-03	8.5	776.674	+						Unknown	
40		90% 0%	1.40E-04 3.83E-03	2.2	091.384 992.858	+						Unknown	
44		0%	3.95E-05	0.9	146.965	-						Unknown	
41		0, 50%	9.75E-07	1.8	146.965	-						Unknown	
42		0, 50%	1.16E-05	0.8	209.948	-						Unknown	
12		0, 50%	9.40E-03	1.8	210.949	-						Unknown	
43		0, 50%	3.24E-04	1.8	211.946	-						UNKNOWN	
44								-					
45								S	ORV				

Page 75 of 86 Supplemental Table 52. Putative identification of maize rhizosphere- and control soil-enriched metabolic markers ¹ Fold-chanae between maize rhizosphere samples and control soil samples. ² P values are derived from Welch's t-test.

³ Retention times (RT) and accurate m/z values, detected by UPLC-Q-TOF in negative (-) or positive (+) ion mode. ⁴ Predicted parameters from the METLIN database using the detected accurate m/z.

⁵ Putative metabolites and their corresponding pathways were validated by information from the PubMed chemical database.

⁶ Putative metabolites that unlikely accumulate in (rhizosphere) soil.

RHIZOSPHERE -ENRICHED

The Plant Journal

Sample	FC	P value ²	RT (min) ³	Detected m/z ³	lon mode ³	Predicted mass ⁴	Adduct ⁴	Annr	n ⁴ Putative Compound ⁴	Predicted Formula ⁴	Putative Pathway ⁵	Soil- or plant-derived
	96	2.2E-05	2.8	656.303		675.325	[M-H2O-H]-	6	Jesaconitine	C35H49NO12	Alkaloids	Unlikely
	23	7.6E-03	3.8	512.139		513.142	[M-H]-	8	Dioxinoacrimarine A	C29H23NO8	Alkaloids	Unlikely
	16	2.6E-04	2.0	434.119		413.147	[M+Na-2H]-	7	Noscapine	C22H23NO7	Alkaloids	-
	833	8.3E-06	2.0	410.106	+	387.117	[M+Na]+	0	HDMBOA-Gk	C16H21NO10	Benzoxazinoids	
	392	3.2E-07	2.2	166.050	+	165.043	[M+H]+	0	HBOA	C8H7NO3	Benzoxazinoids	
	298	1.8E-04	1.5	426.101	+	403.111	[M+Na]+	0	DIM2BOA-Gic	C16H21NO11	Benzoxazinoids	
	292	2.8E-08	2.1	196.061	+	195.053	[M+H]+	2	2-Hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one	C9H9NO4	Benzoxazinoids	
	131	2.7E-06	1.5	410.106	+	387.117	[M+Na]+	0	HDMBOA-Gic	C16H21NO10	Benzoxazinoids	
	125	2.2E-05	1.5	380.095	+	357.106	[M+Na]+	0	HMBOA-Glc	C15H19NO9	Benzoxazinoids	
	92	5.4E-06	2.2	342.078	+	359.085	[M+H-H2O]+	13	TRIBOA-glucoside	C14H17NO10	Benzoxazinoids	
	59	9.7E-05	1.5	396.090	+	373.101	[M+Na]+	0	DIMBOA-GIC	C15H19NO10	Benzoxazinoids	
	55	8.5E-06	2.2	188.032	+	165.043	[M+Na]+	1	HBOA	C8H7NO3	Benzoxazinoids	
	712	3.0E-06	2.2	164.035		165.043	[M-H]-	1	HBOA	C8H7NO3	Benzoxazinoids	
	140	8.7E-05	2.0	424.085		403.111	[M+Na-2H]-	2	DIM2BOA-Glc	C16H21NO11	Benzoxazinoids	
	139	5.5E-05	1.5	402.104		403.111	[M-H]-	1	DIM2BOA-Glc	C16H21NO11	Benzoxazinoids	
	130	1.8E-04	1.5	356.099		357.106	[M-H]-	1	HMBOA-Glc	C15H19NO9	Benzoxazinoids	
	92	4.3E-05	1.5	386.109		387.117	[M-H]-	0	HDMBOA-Gic	C16H21NO10	Benzoxazinoids	
	44	1.4E-04	1.5	372.094		373.101	[M-H]-	1	DIMBOA-Gic	C15H19NO10	Benzoxazinoids	
	41	3.0E-03	1.6	224.054		225.064	[M-H]-	10	2-Hydroxy-4, /-dimetnoxy-2H-1,4-benzoxazin-3(4H)-one	C10H11NO5	Benzoxazinoids	
	34	2.5E-04	2.0	356.099		357.106	[[V]-F]-	0	HMBOA-GC	C15H19NO9	Benzoxazinoids	
	34	6.3E-05	2.0	386.109		387.117	[[VI=F1]=	0	NDAGA CAR	CIGHZINOIU	Benzoxazinoids	
	13	0.7E-02	1.5	462.060		181.038	[[V]-F1]-	22	Diboa	C6H7NO4	Benzoxazinoids	
	64	1.2E.0E	2.0	622.075	+	421.121	[IVI+IVA]+	0	Calcum timetaphosphate	C1EH22NEO9D	Calcium source from Plants	
	27	1.2E=03	2.0	402.097		377 134	[M+Na-2H]-	5	Kinotio, Z.Ndu rocida	C16H19N5O6	Cytokinins	
	607	2.2E-05	2.2	857 230		874 238	[M+H-H2O1+		Nineum*****guucosue Ouereetii 3-vuleeu/u/13)-thanneu/u/13)-fanineu/u/13)-galactoride]	C37H46O24	Elavonoide	
	208	2.2E=05	2.0	828 233		863 225	[M+H-2H2O]+	25	Quarterii 3-Aylosyn (1-3-3)niaiosyn (1-30)rapiosyn (1-32)rgaacosida Cyanida 3-Oribo Xylosyna positid - 23)/(d-bydrawidenzauli)-s61-b-D-ganconyrappeul/1-s61-b-D-galactonyrappeide]	C30H43O22	Flavonoids	
	288	1.0E-05	2.0	379 089		356 090	[M+Na]+	20	6.7 %Timethovy-4/ %Ivetklenediovisioflavine	C19H16O7	Flavonoids	
	179	6.2E-03	1 9	824 197	I	801 209	[M±Na]±	20	Delohindina 3-lativoside 5-(-5-apetylolicoside)	C34H41O22	Flavonoids	
	151	3.2E-03	1 9	615 661	-	1185 330	[M+2NaD+	11	Cvanidin 3-(disinanov/sonboroside) 5-olucoside	C55H61O29	Flavonoids	
	129	9.4E-04	1.5	799 186	-	798 164	IM+HI+	17	Aniaenin 4\'(2\'\-feature) (avioluzionosvi)-(1->2)-ducuronide	C37H34O20	Flavonoids	
	97	4 3E-04	3.8	565.040		542 037	IM+Nal+	25	Augustini	C21H18O15S	Flavonoids	
	95	7.4E-03	2.0	858 241	I	816 211	IM+ACN+HI	4	Kaemofen 3(6)'-sinan/ducosyl-(1-2)-alactoside	C38H40O20	Flavonoids	
	84	1.5E-03	2.0	859 168	-	858 170	[M+H]+	11	Delphindin 3-f(N)-04-malvi-duceside)-5-f(N)-0-1-malvi-duceside)	C35H38O25	Flavonoids	
	81	2.8E-06	2.0	441 120	-	476 132	IM+H-2H201	2	Hasperatin 7-O-durarnnide	C23H24O11	Flavonoids	
	60	2.02-00 2.4E-04	2.0	357 584		713 157	IM+2HD+	2	Delabilita 3/6" malanul alucoside) 5-alucoside	C30H33O20	Flavonoids	
	167	2.4E-04	2.2	276 551	I	507 114	IM+2Na12.	17	Delohini 3-(activity grocoade) 5-gyooside	C23H23O13	Flavonoids	
	456	9.7E-05	2.2	432 115		433 113	IM-HI-	20	Pelaronicin 3-nalactoside	C21H21O10	Flavonoids	
	110	6.5E-06	2.0	462 126		463.124	[M-H]-	20	Mahidina 3-galactoade	C22H23O11	Flavonoide	
	68	1 7E-04	2.0	433 118		403.124	[M-H]-	20	Marinapin-7-O-Spicate	C21H22O10	Flavonoide	
	40	4.3E-05	2.0	433.118		434.121	[M+Na-2H]-	9	Cuantigen #7 - O-Glocoste	C20H19O10	Flavonoids	
	49	4.3E=03	1.5	594 168		505 166	[M+Na-211]- [M_H]_	15	Cyanidin 3-shapmonida S-ducosida	C27H31O15	Flavonoide	
	32	4.2E-05	1.0	470.001		449 108	[M+Na-26]	17	Cyanidi S-nalaritarita	C21H21O11	Flavonoide	
	28	4.2E=05	2.0	470.091		449.108	[IVI+IVd=2FI]=	2	Cyalituri 3 yaladustue Haenaratin Z-O-aluenaida	C22H2I011	Flavonoids	
	20	0.4E=03	2.0	403.120		404.132	[IVI=11]= [M+Na-26].		nesperein /	C21H24O11	Flavonoida	
	10	2.2E=04 3.9E-05	2.0	454.003		433.113	[M+Na-2H]-	11	r eturilari o arabonoside	C21H21O10	Flavonoide	
	17	2.8E-03	1.5	403 109		404 111	[M+Na-211]- [M_H].	14	5 31-Dibudrava 6 7 4/151-pentamethaviflavane	C20H20O9	Flavonoide	
	17	5.4E-04	1.5	357 101		358 105	[M-H]-	8	2.Huf dave 8 (2) 4 5 V tat mathewise flavone	C19H18O7	Flavonoide	
	15	1.8E-03	1.5	595 167		506 174	[M-H]-	0	Narinapin 57-di Controvisionavone	C27H32O15	Flavonoide	
	14	4 3E-04	3.4	979 290		958 295	[M+Na-2H]-	20	Acaretin Z-thampsyle(1,-,,,A)/(jducosyle(1,-,6)/)/(6)///-acetylsophoroside)]	C42H54O25	Flavonoids	
Rhizosphere	277	6.3E-05	2.0	422.087		423.095	[M:H]:	1	Scil 2 dicarboy while while the service of the serv	C14H21N3O10S	Glutathione derivatives	
	23	2.5E-04	2.0	423.091		442.116	IM-H2O-H1-	16	S-(4-Nirobenzyloulathione	C17H22N4O8S	Glutathione derivatives	
	297	2.0E-05	2.0	194.045	+	193.038	IM+HI+	1	5 6-Dihydroxyindole-2-carboxylic acid	C9H7NO4	Indoles	
	115	2.7E-06	2.1	260.056	+	237.064	[M+Na]+	11	Methyl 2.3-dihydro-3.5-dihydroxy-2-oxo-3-indoleacetic acid	C11H11NO5	Indoles	
	82	3.7E-04	1.6	150.056	+	149.048	[M+H]+	6	3-Hydroxyindolin-2-one	C8H7NO2	Indoles	
	56	8.6E-03	4.6	982.243	+	959.230	[M+Na]+	23	(+)-7-Isojasmonic acid CoA	C33H52N7O18P3S	Jasmonates	
	1178	4.0E-04	1.7	493.281	+	470.301	[M+Na]+	18	(25R)-26,26,26-trifluoro-1'alpha;,25-dihydroxycholecalciferol	C27H41F3O3	Lipids	Unlikely
	596	4.2E-04	1.7	494.286	+	511.291	[M+H-H2O]+	4	Phosphoserine	C23H46NO9P	Lipids	
	162	5.3E-06	2.0	231.048	+	208.059	[M+Na]+	1	Lipoic acid	C8H16O2S2	Lipids	
	83	4.8E-04	2.0	824.725	+	859.739	[M+H-2H2O]+	1	Phosphatidylcholine	C50H102NO7P	Lipids	
	16	1.5E-04	2.2	165.038		166.048	[M-H]-	14	Arabinonic acid	C5H10O6	Lipids	
	59	1.2E-07	2.2	165.042	+	142.053	[M+Na]+	1	4-Cyanoindole	C9H6N2	Miscellaneous/Drugs	Unlikely
	62	1.6E-04	1.5	438.083		439.090	[M-H]-	0	Hydroxytinidazole glucuronide	C14H21N3O11S	Miscellaneous/Drugs	Unlikely
	24	2.8E-04	1.5	460.065	-	415.066	[M+FA-H]-	0	Cephaloridine	C19H17N3O4S2	Miscellaneous/Drugs	Unlikely
	131	2.7E-05	2.2	275.533	+	527.071	[M+H+Na]2+	2	Indoxacarb	C22H17CIF3N3O7	Miscellaneous/Oxazines	Unlikely
	17	8.0E-04	1.5	424.086	-	425.086	[M-H]-	16	5,12-Dihydroxanthommatin	C20H15N3O8	Miscellaneous/Oxazines	Unlikely
	15	4.0E-04	3.8	572.058		527.071	[M+FA-H]-	18	Indoxacarb	C22H17CIF3N3O7	Miscellaneous/Oxazines	Unlikely
	64	5.0E-03	1.6	572.158	+	571.160	[M+H]+	16	Cyclochlorotine	C24H31Cl2N5O7	Miscellaneous/Peptides	
	149	5.9E-04	3.8	535.028	+	534.029	[M+H]+	15	UDP-L-Ara4O	C14H20N2O16P2	Nucleotides	
	720	1.8E-05	2.0	827.233	+	804.258	[M+Na]+	17	5-FormyI-5,6,7,8-tetrahydromethanopterin	C31H45N6O17P	Organic acid	
	381	2.7E-04	2.0	797.222	+	774.247	[M+Na]+	18	7,8-Dhydromethanopterin	C30H43N6O16P	Organic acid	
	159	2.8E-04	4.7	538.029	+	515.045	[M+Na]+	10	3-(ADF)-gyperate	013H19N5013P2	Organic acid derivatives	
	150	4.1E-06	2.2	149.011	-	150.016	[M-H]-	15	i arranc acio	C4H6O6	Organic acids	
	33	1.6E-05	2.1	179.022		134.022	[M+FA-H]-	14	Maic acid	C4H6O5	Urganic acids	
	26	1.8E-04	2.2	150.015		169.038	[M-H2O-H]-	28	Univariadiplicational calif	C7H7NO4	Urganic acids	
	24	4.3E-04	1.5	408.072		387.099	[M+Na-2H]-	3	Pyractostronomiana line dia and	C19H18CIN3O4	Urganic acids/Carbamates	Unlikely
	368	4.6E-06	2.1	194.046		195.053	[M-H]-	1	N-acetyl-4-aminosalicylic acid	C9H9NO4	Pnenylpropanoids/SA derivatives	
	189	1.1E-05	1.5	194.045		195.053	[M-H]-	2	N-acetyl-4-aminosalicylic acid	C9H9NO4	Pnenylpropanoids/SA derivatives	
	16	1.5E-04	2.1	195.049		214.063	[M-H2O-H]-	20	Prienyi salicylate	C13H10O3	Pnenylpropanoids/SA derivatives	
	16	4.9E-04	3.8	542.061		521.081	[M+Na-2H]-	9	4-(Cytidine 5)-diphospho)-2-C-methyl-D-erythritol	C14H25N3O14P2	Sugar alcohols	1
	24	4.2E-03	3.1	671.291		650.330	[M+Na-2H]-	20	i napsigargin	C34H50O12	repenoids	Unlikely
	7523	1.3E-06	2.2	267.546	+						Unknown	
	518	1.1E-06	2.2	259.557	+						Unknown	
	329	4.5E-06	2.2	268.558	+						Unknown	
	241	5.8E-06	2.2	274.563	+						Unknown	
	168	7.3E-05	2.0	391.588	+						Unknown	
	148	8.8E-04	2.0	607.672	+						Unknown	
		1.1E-05	2.2	260.556	+						Unknown	
	145		2.0	630.666	+						Unknown	
	145 106	5.2E-05	2.0								Unknown	
	145 106 96	5.2E-05 1.8E-05	2.2	282.550	+							
	145 106 96 93	5.2E-05 1.8E-05 2.0E-03	2.2 2.0	282.550 592.672	++++						Unknown	
	145 106 96 93 87	5.2E-05 1.8E-05 2.0E-03 5.2E-03	2.2 2.0 2.2	282.550 592.672 342.578	+ + +						Unknown Unknown	
	145 106 96 93 87 66	5.2E-05 1.8E-05 2.0E-03 5.2E-03 2.3E-05	2.2 2.0 2.2 2.2	282.550 592.672 342.578 350.566	+ + + +						Unknown Unknown Unknown	
	145 106 96 93 87 66 59	5.2E-05 1.8E-05 2.0E-03 5.2E-03 2.3E-05 8.1E-05	2.2 2.0 2.2 2.2 2.0	282.550 592.672 342.578 350.566 376.582	+ + + +						Unknown Unknown Unknown Unknown	
	145 106 96 93 87 66 59 58	5.2E-05 1.8E-05 2.0E-03 5.2E-03 2.3E-05 8.1E-05 3.0E-05	2.2 2.0 2.2 2.2 2.0 2.7	282.550 592.672 342.578 350.566 376.582 669.273	+ + + + -						Unknown Unknown Unknown Unknown Unknown	
	145 106 96 93 87 66 59 58 35	5.2E-05 1.8E-05 2.0E-03 5.2E-03 2.3E-05 8.1E-05 3.0E-05 1.0E-04	2.2 2.0 2.2 2.2 2.0 2.7 2.7	282.550 592.672 342.578 350.566 376.582 669.273 670.279	+ + + + -				SUBMITTED MANUSCRIPT		Unknown Unknown Unknown Unknown Unknown	
	145 106 96 93 87 66 59 58 35 21	5.2E-05 1.8E-05 2.0E-03 5.2E-03 2.3E-05 8.1E-05 3.0E-05 1.0E-04 1.3E-03	2.2 2.0 2.2 2.2 2.0 2.7 2.7 2.7	282.550 592.672 342.578 350.566 376.582 669.273 670.279 798.190	+ + + - -				SUBMITTED MANUSCRIPT		Unknown Unknown Unknown Unknown Unknown Unknown Unknown	
	145 106 96 93 87 66 59 58 35 21 17	5.2E-05 1.8E-05 2.0E-03 5.2E-03 2.3E-05 8.1E-05 3.0E-05 1.0E-04 1.3E-03 9.0E-04	2.2 2.0 2.2 2.2 2.0 2.7 2.7 1.5 2.9	282,550 592,672 342,578 350,566 376,582 669,273 670,279 798,190 1067,243	+ + + - - -				SUBMITTED MANUSCRIPT		Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown	
	145 106 96 93 87 66 59 58 35 21 17 15	5.2E-05 1.8E-05 2.0E-03 5.2E-03 2.3E-05 8.1E-05 3.0E-05 1.0E-04 1.3E-03 9.0E-04 3.5E-06	2.2 2.0 2.2 2.0 2.7 2.7 1.5 2.9 2.2 2.2	282.550 592.672 342.578 350.566 376.582 669.273 670.279 798.190 1067.243 1179.206	+ + + - - - -				SUBMITTED MANUSCRIPT		Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown	

The Plant Journal

2	
2	
3	
4	
5	
5	
6	
7	
'	
8	
a	
10	
11	
40	
12	
13	
11	
14	
15	
16	
10	
17	
18	
40	
19	
20	
24	
21	
22	
22	
23	
24	
25	
25	
26	
27	
21	
28	
29	
20	
30	
31	
20	
3Z	
33	
3/	
04	
35	
36	
27	
31	
38	
20	
28	
40	
11	
41	
42	
43	
44	
45	
40	
46	
47	
-	

									SOIL-ENRICHED			
Sample	FC	P value ²	RT (min) ³	Detected m/z ³	lon mode ³	Predicted mass ⁴	Adduct ⁴	∆ppm	⁴ Putative Compound ⁴	Predicted Formula ⁴	Putative Pathway ⁵	Soil- or plant-derived ⁶
	0.28	1.8E-03 1.4E-04	8.7	309.175	+	286.189	[M+Na]+ [M+F4-H]-	20	N-Acetyl-leucyl-leucine	C14H26N2O4 Ca3H6O18P6	Amino acids Calcium ions	
	0.43	6.3E-03	8.6	171.149	+	170.142	[M+H]+	1	3-Acrylamidopropyl trimethylammonium	C9H18N2O	Inorganic compounds	Unlikely
	0.04	1.6E-06	6.6	783.518	+	782.510	[M+H]+	1	Phosphatidylglycerol	C43H75O10P	Lipids	
	0.19	1.4E-03 4.1E-03	6.4 5.5	521.394	+	624.400 498.332	[M+Nal+	5 12	Phosphatidy/glycerol Phosphatidy/glycerol	C24H51O8P	Lipids	
	0.23	3.2E-03	6.1	588.422	+	565.447	[M+Na]+	24	Phosphatidylcholine	C30H64NO6P	Lipids	
	0.24	4.7E-03	6.5	382.315	+	417.324	[M+H-2H2O]+	9	N-arachidonoyl leucine	C26H43NO3	Lipids	Liplikoh
	0.25	2.0E-03	6.8	741.523	+	740.536	[M+H]+	26	Phosphatidic acid	C42H77O8P	Lipids	Offlikely
	0.26	2.3E-03	6.6	649.450	+	666.447	[M+H-H2O]+	8	Phosphatidylglycerol	C34H67O10P	Lipids	
	0.28	9.8E-03	6.7	566.452	+	565.447	[M+H]+	4	Phosphatidylgiyderol	C30H64NO6P	Lipids	
	0.30	1.2E-04	8.4	418.271	+	395.282	[M+Na]+	1	N-(3-hydroxyphenyl)-Arachidonoyl amide	C26H37NO2	Lipids	
	0.33	9.1E-03	6.9	652.440	÷.	669.437 736 504	[M+H-H2O]+	8	Phosphatidylethanolamine Phosphatidic acid	C36H64NO8P	Lipids	
	0.34	1.8E-04	4.1	405.199	+	382.212	[M+Na]+	5	Phosphatidic acid	C17H35O7P	Lipids	
	0.36	7.9E-03	6.0	660.481	+	659.468	[M+H]+	9	Diacylglycerol	C43H63D5O5	Lipids	
	0.36	7.0E-03 2.1E-03	6.1 8.5	629.418	+	628.410	[M+H]+	1	Phosphatidic acid 2-carboxy-2-amino-3-O-(13\'-methyltetradecanovi)-4-hydroxy-17-methyloctadec-5-ene-1-sulfonic acid	C34H61O8P C35H67NO8S	Lipids	Unlikely
	0.37	6.4E-03	8.8	1010.743	+	987.759	[M+Na]+	4	Galabiosylceramide	C55H105NO13	Lipids	
	0.38	1.1E-03	6.4	648.561	+	647.561	[M+H]+	11	Diacylglycerol Trice debrastel	C41H75D5O5	Lipids	
	0.38	3.1E-03	8.6	518.351	+	495.369	[M+Na]+	13	Phosphatidylcholine	C25H54NO6P	Lipids	
	0.40	9.9E-03	5.7	420.283	+	437.291	[M+H-H2O]+	11	Phosphatidylethanolamine	C21H44NO6P	Lipids	
	0.40	1.1E-03 4.8E-03	8.7	766.578	+	765.567	[M+H]+ [M+H]+	4	Phosphatidylcholine Phosphatidylolycerol	C44H80NO7P C34H67O10P	Lipids	
	0.41	8.8E-03	6.4	1032.690	+	1009.707	[M+Na]+	5	3-O-acetyl-sphingosine-2,3,4,6-tetra-O-acetyl-GalCeramide	C56H99NO14	Lipids	
	0.42	5.8E-03	8.3	764.596	+	799.609	[M+H-2H2O]+	0	Phosphatidylethanolamine	C45H86NO8P C29H58NO7P	Lipids	
	0.44	5.7E-03	6.6	902.749	+	901.750	[M+H]+	9	Phosphatidylcholine	C52H104NO8P	Lipids	
	0.06	1.4E-04	1.3	691.689	-	692.705	[M-H]-	12	Hydroxyphthioceranic acid (C46)	C46H92O3	Lipids	Unlikely
	0.09	9.6E-04 6.0E-04	6.3 7.5	1154.726		1133.780 898.705	[M+Na-2H]- [M-H]-	24	Galapha1-4Galbeta1-4Gicbeta-Ceramide	C59H94O6	Lipids	
	0.20	3.4E-03	2.3	719.725		720.736	[M-H]-	4	Hydroxyphthioceranic acid (C48)	C48H96O3	Lipids	Unlikely
	0.20	4.7E-03	6.8	1007.732		1026.768	[M-H2O-H]-	17	Triacylglycerol	C69H102O6	Lipids	Liplikoh
	0.22	6.1E-03	8.7	693.481		712.504	[M+H2O-H]-	6	Phosphatidic acid	C40H73O8P	Lipids	OTTIKETy
	0.24	9.1E-03	8.5	647.673		648.678	[M-H]-	2	Octacosyl-palmitate	C44H88O2	Lipids	
	0.24	1.0E-03 3.1E-03	1.2	937.711		938.736	[M-H]- [M+H]+	25	Triacylglycerol Vinnatic acid B	C62H98O6 C27H41N3O7	Lipids Miscellaneous	Linlikely
	0.44	6.5E-03	6.9	493.453	÷	510.455	[M+H-H2O]+	1	Nb-Lignoceroyttryptamine	C34H58N2O	Miscellaneous/Alkylindoles	Unlikely
	0.03	3.5E-05	1.1	208.936		209.941	[M-H]-	13	2,4.6-Trichloroanisole	C7H5Cl3O	Miscellaneous/Aromatics	Unlikely
	0.15	5.5E-04 5.1E-04	1.6	244.894		223.920	[M+Na-2H]-	20	2,3,6-Trichlorobenzoic acid	C7H3Cl3O2	Miscellaneous/Aromatics	Unlikely
	0.31	8.1E-04	8.6	476.308	+	475.301	[M+H]+	0	Netilmicin	C21H41N5O7	Miscellaneous/Drugs	Unlikely
	0.35	2.0E-03 2.7E-03	8.6 4.5	319.202	÷.	336.205	[M+H-H2O]+ [M+Na]+	0	Acebutolol 5-bydrowyfluvastatin	C18H28N2O4 C24H26ENO5	Miscellaneous/Drugs Miscellaneous/Drugs	Unlikely
	0.17	4.2E-03	7.7	493.102		448.103	[M+FA-H]-	1	N,N\-(((4-methyl-1,3-phenylene)bis(azanediyl))bis(carbonothioyl))dibenzamide	C23H20N4O2S2	Miscellaneous/Drugs	Unlikely
Control soil	0.24	4.7E-03	8.8	1015.228		994.249	[M+Na-2H]-	4	Calcein AM	C46H46N2O23	Miscellaneous/Fluoresceins	Unlikely
	0.00	2.5E-05	1.0	209.949		244.950	[M+Na-2H]- [M-H2O-H]-	21	2,6-Dichlorobenzamide 7-N.N-Dimethylamino-1.2.3.4.5-pentathiocyclooctane	C5H11NS5	Miscellaneous/Insecticides	Unlikely
	0.23	9.5E-03	6.5	633.269	+	668.283	[M+H-2H2O]+	2	Filicin	C36H44O12	Miscellaneous/Ketones	Unlikely
	0.29	6.3E-04 7.0E-03	6.4 1 1	939.584 306.938	÷.	974.593 325 964	[M+H-2H2O]+ [M-H2O-H]-	4 25	Megalomicin C2 Butonate	C49H86N2O17 C8H14Cl3O5P	Miscellaneous/Macrolides Miscellaneous/Organophosphopates	Unlikely
	0.03	3.3E-04	0.9	338.895		317.928	[M+Na-2H]-	24	Tiludronic acid	C7H9CIO6P2S	Miscellaneous/Organophosphonates	Unlikely
	0.43	7.1E-03	6.9	696.468	+	731.483	[M+H-2H2O]+	3	Microcolin B	C39H65N5O8	Miscellaneous/Peptides	Unlikely
	0.21	5.7E-04	8.8	1031.546	+	1066.556	[M+H-2H2O]+	2	3-0-(Glcb1-2(Xylb1-3)Glcb1-4Galb)-(25R)-5alpha-spirostan-3beta-ol	C51H86O23	Miscellaneous/Polysaccharides	
	0.44	3.6E-03	8.7	361.237	+	360.230	[M+H]+	0	11beta-17-Dihydroxy-6alpha-methylpregn-4-ene-3,20-dione	C22H32O4	Miscellaneous/Steroids	Unlikely
	0.14	2.5E-03 2.4E-03	8.9	859.065 500.401	-	878.098 535.403	[M-H2O-H]- [M+H-2H2O1+	16 22	Mn(III) tetrakis(4-benzoic acid) porphyrin chloride	C48H28CIMnN4O8 C35H53NO3	Miscellaneous/Tetrapyrroles Miscellaneous/Vitamins	Linlikely
	0.40	6.5E-03	6.6	541.358	+	576.366	[M+H-2H2O]+	8	1-Hydroxyvitamin D3 3-D-glucopyranoside	C33H52O8	Miscellaneous/Vitamins	Unlikely
	0.16	5.1E-03	5.6	723.070	-	724.065	[M-H]-	16	Adenylated molybdopterin	C20H26N10O12P2S2	Nucleotides	
	0.23	5.3E-03	1.3	432.844		433.851	[M-H]-	0	3-(3,5-Diiodo-4-hydroxyphenyl)lactate	C9H8I2O4	Organic acids	
	0.40	1.1E-03	6.4	491.189	+	468.200	[M+Na]+	0	Paucin 4. O 17 // Outbilleraride) O desse aleba D alveranza all'AD avera inseital	C23H32O10	Terpenoids	Unlikely
	0.13	3.3E-04	5.4	383.217	+	444.141	[IVI+F1]*	3	1°O-[2°(E°Cysteinamidu)-2°deuxy-aipna-b-gidcopyranosyij-1b-myo-inositoi	C13H26N2O113	Unknown	
	0.30	7.2E-03	1.1	217.987	+						Unknown	
	0.39 0.40	4.1E-03 3.3E-03	ь.4 6.2	1049.598 664.622	+						Unknown	
	0.42	9.8E-03	6.5	988.586	+						Unknown	
	0.43	4.7E-04	8.8	768.714	+						Unknown	
	0.02	9.3E-04	1.1	192.959	-						Unknown	
	0.03	1.8E-03	1.1	322.917							Unknown	
	0.06	3.2E-05 1.1E-04	1.3	747.725 910.685							Unknown	
	0.11	2.9E-03	1.9	629.726							Unknown	
	0.14	7.9E-03	2.0	434.817							Unknown	
	0.14	2.1E-03	1.5	319.839							Unknown	
	0.17	1.1E-03	1.1	311.877							Unknown	
	0.17	2.8E-03 3.8E-04	9.1 1.3	328.864	-						Unknown	
	0.18	3.3E-04	1.5	255.929							Unknown	
	0.19	1.2E-03 1.7E-03	2.1	587.806 568.840	-						Unknown	
	0.19	4.8E-03	1.1	1021.633	-						Unknown	
	0.20	9.8E-03	1.3	782.734							Unknown	
	0.20	9.4E-03 3.3F-04	1.1 8.9	295.900 1098.495							Unknown	
	0.21	1.9E-03	2.3	320.835							Unknown	
	0.23	3.9E-03 6.0E-04	1.3	575.804							Unknown	
	0.23	2.0E-03	1.2	574.803	-				SUBMITTED MANUSCRIPT		Unknown	
	0.24	1.2E-04	8.9	1178.917							Unknown	
	0.24	4.7E-03 7.0E-03	9.3 3.9	261.886							Unknown	

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

SUPPLEMENTAL METHODS

3 DNA extraction, 16S rRNA gene sequencing and analysis.

For microbial profiling, eight additional growth tubes were set up, as described in the Experimental Procedures, but were not used for the collection of chemicals. Four of these tubes contained one Arabidopsis plant and four contained only growth substrate. After 5 weeks, plants were sampled by carefully loosening the soil around the edges of the growth tube, pulling up the roots and removing excess soil by shaking. Soil samples were also taken from the tubes without plants, using a sterile spatula and avoiding surface material. DNA was extracted from the resulting samples consisting of either roots covered in their closely adhering soil (root plus rhizosphere samples), or only soil (control soil), using a PowerSoil DNA extraction kit (MoBio Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer's instructions. Partial prokaryotic 16S rRNA genes were amplified from this extract, using primers 799F and 1193R (Chelius and Triplett, 2001; Bodenhausen et al., 2013), which were modified to include the Illumina overhang adapter nucleotide sequences (adapters shown in normal typeface, locus specific primers in bold letter font):

799F:

20 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAACMGGATTAGATACCCKG 21 1193R:

22 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG**ACGTCATCCCCACCTTCC**.

PCRs were carried out, using 0.4 U of KAPA HiFi HotStart DNA polymerase (Kapa
Biosystems Ltd, London, UK) on 2 µL of DNA extract in the presence of 2.5 mM

Rhizosphere metabolomics

MgCl₂, 1.2 mM deoxynucleoside triphosphates (dNTPs), 0.2 µM of each primer, and the manufacturer's reaction buffer in a total reaction volume of 20 µL (PCR conditions: 95 °C for 3 min; 25 cycles at 95 °C for 30 s, 58 °C for 30 s and 72 °C for 30 s; and 72 °C for 5 min). To reduce PCR bias, the PCR was performed in triplicate and amplicons were pooled. A sequencing library was constructed by cleaning up pooled PCR products, using AMPure XP beads (Beckman Coulter (UK) Ltd, High Wycomb, UK), followed by attachment of dual indices and Illumina sequencing adapters, using the Nextera XT Index Kit (Illumina Inc. Essex UK) and following the manufacturer's instructions. The indexed PCR products were cleaned using AMPure XP beads and sequencing was performed using a paired end 2 x 250 bp cycle kit v2 on a MiSeq machine running v2 chemistry (Illumina Inc, at The Genome Analysis Centre, Norwich, UK). Raw sequencing data were deposited in the European Nucleotide Archive (ENA) under accession number PRJEB17782. Sequences were analysed by USEARCH (Edgar, 2010) and Qiime pipelines (Caporaso et al., 2010a). Sequences were filtered using USEARCH, retaining those with a maxEE value of 1 (equivalent to 1 in 1,000 errors) and 251 bp long. Chimeras were detected using UCHIME (Edgar et al., 2011), using both reference based and de novo detection methods. After selection of OTUs by USEARCH (97% similarity), the representative sequences were aligned to the Greengenes 13 8 core reference alignment (DeSantis et al. 2006) using PyNAST (Caporaso et al., 2010b). All other steps leading to the generation of OTU abundance tables were performed using Qiime. All statistical analyses of community data were performed using the R programming language (R Development Core Team, 2016; https://www.R-project.org/) and with the packages phyloseq (McMurdie and Holmes, 2013), vegan (https://github.com/vegandevs/vegan) and DESeq2 (Love et al., 2014).

The Plant Journal

Tissue damage by the acidified extraction solutions was quantified by conductivity of

Pétriacq et al.

Rhizosphere metabolomics

51	
52	Quantification of plant tissue damage by electrolytes leakage.

cell electrolytes leakage, as described previously (Pétriacg et al., 2016a, 2016b). For Arabidopsis, roots were collected from plants cultivated in half strength Murashige-Skoog, solidified with 0.8% Phytagel (Sigma-Aldrich, UK) and adjusted to pH 5.8. Root replicates consisted of one intact root system from 2-week-old plants, which was removed carefully from the agar medium. For maize, roots were collected from surface sterilised seeds, germinated and grown for five days on wetted filter paper in sealed petri-dishes. Tissues were incubated for 1 min in 10 mL of different acidified extraction solutions, containing 0.05% formic acid (v/v) and 0%, 50% or 95% methanol (v/v). As a negative control, tissues were incubated in double-distilled sterile water. As a positive control for cell damage, tissues were wounded prior to extraction solution incubation by cutting roots into 10 pieces with a razor blade. Directly after incubation, tissues were rinsed in double-distilled sterile water, then transferred into glass bottles containing 5 mL of double-distilled sterile water, and subsequently agitated at room temperature for 2 hours on an orbital shaker (200 rpm). Conductivity was then measured in the balanced solution, using a CMD 500 WPA conductivity meter. Subsequently, all samples were boiled for 30 min and re-measured for conductivity of lysed tissue. Cell damage was expressed as the average level of conductivity, relative to the maximum level of conductivity after tissue lysis (set at 100%). Each treatment was based on 4 replicated samples (n =4). Data were analysed in IBM SPSS (v. 22), using a Welch's F test for ranked data, followed by Games-Howell tests to assess individual differences (P < 0.05). The experiments were repeated three times with similar results.

Rhizosphere metabolomics

77 Analysis of microscopic root cell damage by extraction solutions.

Transgenic Arabidopsis plants (Col-0) expressing the 35S:IBI1:YFP construct, encoding the cytoplasmic aspartyl-tRNA synthatase IBI1 with a C-terminal fusion to Yellow Fluorescent Protein (Luna et al., 2014; 35S::IBI1:YFP), were cultivated for two weeks (8.5/15.5 h light/dark at 21/19 °C, 120 µmol m⁻² s⁻¹ photons, 70% relative humidity) on half strength Murashige-Skoog agar plates, solidified with 0.8% Phytagel (Sigma-Aldrich, UK) and adjusted to pH 5.8. Roots were extracted carefully form agar plates, and incubated for 1 min in the acidified MeOH-containing extraction solutions (0, 50, 95% MeOH with 0.05% formic acid, v/v). As negative and positive controls for cell damage, roots were incubated for 1 min in double-distilled sterile water, or for 15 min in 100% MeOH, respectively. After incubation, roots were rinsed in double-distilled sterile water prior to epi-fluorescence microscopy analysis. Fluorescence was observed using an epi-fluorescence microscope (Olympus BX51, excitation filter BP 470/40 nm, barrier filter BP 525/50 nm). For each treatment, root systems form 12 different plants were analysed and photos were taken of representative samples. The experiment was performed four times with similar results.

95 Analysis of impacts on soil and rhizosphere bacteria by extraction solutions.

Tubes (30 mL; n = 3) containing the sand:compost mixture (9:1 v/v) with or without 5week-old Arabidopsis were left untreated, or were bacterized by syringe injection with 5 mL of 10 mM MgSO₄, containing either YFP-expressing *P. simiae* WCS417r (Zamioudis *et al.*, 2014), or rifampicin-resistant *B. subtilis* 168 (Yi *et al.*, 2016), to a final density of 10⁷ colony CFU g⁻¹. After 48 h, tubes were flushed with extraction

Pétriacq et al.

The Plant Journal

Rhizosphere metabolomics

solution (as detailed in Experimental procedures). Additional tubes were flushed with double-distilled sterile water (control), or 95% MeOH and left for 45 min (positive control for cell damage). Subsequently, 1 g of either control soil (without roots), or Arabidopsis roots plus adhering rhizosphere soil, was sampled from the tubes, suspended for 5 min into 50 mL of 10 mM MgSO₄, and centrifuged (5 min, 3,500 g). Pellets were re-suspended in 1 mL of 10 mM MgSO₄, and subjected to dilution plating onto Luria Broth (LB) agar medium supplemented with 5 µg mL⁻¹ of the anti-fungal cycloheximide. For testing impacts on culturable soil bacteria, LB agar contained no further antibiotics: for testing impacts on P. simiae WCS417r and B. subtilis 168, plates were supplemented with 5 μ g mL⁻¹ tetracycline + 25 μ g mL⁻¹ rifampicin and 50 µg mL⁻¹ rifampicin, respectively. Plates were kept for 24 - 48 h at 28 °C. Each biologically replicated sample was plated four times, after which the technical replicates were averaged to minimize confounding effects of heterogeneity in suspended pellets. Experiments were repeated twice with comparable results.

116 UPLC-Q-TOF mass spectrometry.

Untargeted metabolic profiling by UPLC-Q-TOF mass spectrometry (MS) was performed as described previously (Pétriacg et al., 2016b) using an ACQUITY ultrahigh-pressure liquid chromatography (UPLC) system coupled to a SYNAPT G2 Q-TOF mass spectrometer with an electrospray (ESI) ionization source (Waters, UK). The system was controlled by MassLynx v. 4.1 software (Waters). Chromatographic separation of samples was carried out at a flow rate of 0.4 mL min⁻¹ using an ACQUITY UPLC BEH C18 column (2.1 × 50 mm, 1.7 µm, Waters) coupled to a C18 VanGuard pre-column (2.1 x 5 mm, 1.7 µm, Waters). The mobile phase consisted of solvent A (0.05 %, formic acid v/v, in water) and solvent B (0.05 % formic acid v/v in

Rhizosphere metabolomics

126	acetonitrile) with the following gradient: 0 – 3 min 5 – 35 % B, 3 – 6 min 35 – 100 %
127	B, holding at 100 % B for 2 min, 8 - 10 min, 100 - 5 % B. The column was
128	maintained at 45 $^\circ\text{C}$ and the injection volume was 10 $\mu\text{L}.$ Between each condition, a
129	blank was injected with 50% methanol (v/v) to clean the column. Sample runs in
130	negative and positive ionization mode (ESI ⁻ and ESI ⁺) were separated by two
131	consecutive injections with 50% methanol (v/v) to allow stabilization of the ionization
132	modes. An ACQUITY PDA detector (Waters) was used to monitor the UV trace
133	(range 205 – 400 nm, sampling rate 40 points s^{-1} , resolution 1.2 nm). MS detection
134	of ions was operated in sensitivity mode by SYNAPT G2 (50 - 1200 Da, scan time =
135	0.2 s) in both ESI ⁻ and ESI ⁺ , using a full MS scan (<i>i.e.</i> no collision energy) and
136	applying the MS ^E function with a ramp in the transfer cell in elevated energy mode (5
137	to 45 eV). The following conditions were applied for ESI ⁻ (capillary voltage - 3 kV,
138	sampling cone voltage - 25 V, extraction cone voltage -4.5 V, source temperature
139	120 °C, desolvation temperature 350 °C, desolvation gas flow 800 L h ⁻¹ , cone gas
140	flow 60 L h^{-1}), and for ESI ⁺ (capillary voltage 3.5 kV, sampling cone voltage 25 V,
141	extraction cone voltage 4.5 V, source temperature 120 °C, desolvation temperature
142	350 °C, desolvation gas flow 800 L h^{-1} , cone gas flow 60 L h^{-1}). Prior to analyses, the
143	Q-TOF was calibrated by infusing a sodium formate solution. Accurate mass
144	detection was ensured by infusing the internal lockmass reference peptide leucine
145	enkephalin during each run.

147 Statistical analysis of MS data.

Prior to multivariate analyses, the XCMS R package (v. 3.1.3; Smith *et al.*, 2006) was used to align and integrate raw UPLC-Q-TOF peaks, to correct for total ion current (TIC) and median fold-change. All statistical analyses were performed with Page 83 of 86

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

using median-normalized. cube-root-transformed and Pareto-scaled data. MetaboAnalyst software (v. 3.0, http://www.metaboanalyst.ca; Xia et al., 2015). Three-dimensional principal component analyses (3D-PCA) were based on the first three principal components (PCs) that explain most variation of the dataset. Supervised partial least square discriminant analyses (PLS-DAs) were conducted to quantify discriminative power between soil types and extraction solutions. PLS-DA models were validated by correlation (R^2) and predictability (Q^2) parameters for both ESI⁺ and ESI⁻ modes ($\mathbb{R}^2 > 0.94$ and $\mathbb{Q}^2 > 0.59$, respectively). Numbers of total ions were obtained from XCMS output datasets. To quantify metabolic differences between rhizosphere and control soil, volcano plots were constructed at a statistically significant threshold of P < 0.01 (Welch's *t*-test) and a fold-difference threshold of 2, using MetaboAnalyst (v. 3.0, http://www.metaboanalyst.ca; Xia et al., 2015). To obtain putative identities of a combined set of ions from all three extraction solutions that are either enriched in Arabidopsis soil, or its corresponding control soil, the top-20 ranking ions from each volcano plot were selected by fold-change (above 2 or below -2) and P value, followed by an ANOVA (P < 0.01) for statistical differences between all soil/extraction solution combinations, using a Benjamini-Hochberg false discovery rate (FDR) correction for multiple hypothesis testing (Hochberg and Benjamini, 1990). To obtain putative identities from the 50% MeOH extraction solution that are either enriched in the maize rhizosphere, or corresponding control soil, the top-50 ranking ions from each volcano plot (ESI⁺ and ESI⁻) were selected. For both cultivation systems, ions were corrected for adducts and/or isotopes, using MarVis (v. 1.0; http://marvis.gobics.de; tolerance: m/z = 0.1Da, RT = 10 s; Kaever et al., 2012). Putative metabolites were identified by referencing the final set of detected accurate m/z values against publicly available

Rhizosphere metabolomics

 chemical databases using METLIN, PubChem, MassBank, Lipid Bank, ChemSpider, Kegg, AraCyc and MetaCyc database, as documented in several studies (Kaever et al., 2009; Kaever et al., 2012; Gamir et al., 2014a, 2014b; Pastor et al., 2014; Pétriacq et al., 2016a, 2016b). METLIN (https://metlin.scripps.edu) was used to determine accuracy and chemical formulae for the putative compounds. PubChem (https://pubchem.ncbi.nlm.nih.gov/) was used to check the predicted pathway classification. In cases where multiple ions could be annotated to the same putative metabolite (due to different adducts and ionization modes; Tables S1 and S2), they were counted additively to the metabolite class presented in the pie-charts of Figures 6 and 7.

Experimental system for profiling distant rhizosphere fractions.

To investigate whether the chemical influence of the rhizosphere extends beyond soil that is closely associated with roots, maize plants were grown in mesh bags, which allowed for physical separation of root systems from the distal soil in the periphery of the growth tube. Bags were constructed from a nylon mesh (35 um diameter holes), folded over and heat sealed to produce bags (6 cm x 11 cm, approximate diameter when filled = 3.5 cm). These bags were filled with 85 cm³ of a mixture of 75:25 (v/v) agricultural soil:perlite, as used previously for maize experiments. Each mesh bag was placed into the centre of the 150-mL plastic tube (11 cm high and 5 cm diameter; Starlab) with a miracloth sheet covering the bottom hole of the tube. Seventy cm³ of the same soil substrate was used to fill the peripheral space between the mesh bag and tube wall. A total of 24 pots were set up in this manner. Pre-germinated maize seeds (W22) were planted into the bags of 12 tubes. The other 12 tubes were left unplanted to serve as plant-free controls. All Page 84 of 86

Page 85 of 86

The Plant Journal

Pétriacq et al.

Rhizosphere metabolomics

tubes were wrapped in foil and covered with black plastic beads to prevent algal growth. Sixty mL of distilled water was added to each tube to saturate the soil with water before seeds were planted, after which all pots were transferred to a growth cabinet with the following conditions: 16/8 h light/dark with an average light intensity of 140 μ mol m⁻² s⁻¹ at the top of the collection tubes, a relative humidity of 60%, and a constant temperature of 20 °C. Soil metabolites were extracted from the different soil fractions after 24 days of growth. To collect metabolites from the distal soil fractions, black beads were removed, and mesh bags were carefully removed from half of the pots (6 tubes with maize and 6 without). The remaining distal soil in the tube (*i.e.* the soil that had been outside the bag) was tapped to the bottom of the 150-mL tubes and extracted by applying 25 mL of acidified 50% (v/v) MeOH to the top of the soil. The solution was flushed through the tube by applying pressure for 1 min through a modified 150-mL tube lid containing a 50-mL syringe, until ~10 mL of solution was collected from the base of the tube into new 50-mL tubes. To collect metabolites from the whole soil fractions, plastic beads were removed from the remaining 12 pots and maize shoots were cut from the 6 that contained plants. Subsequently, 50 mL of acidified 50% MeOH (v/v) was applied to the top of the tube, keeping the mesh bags in place. The solution was flushed through by applying pressure for 1 min using the modified lid, as previously described, resulting in a least 10 mL of collection volume at the base of the tube. All extracts were centrifuged to pellet soil residues (5 min, 3,500 g), after which 8 mL of supernatant were transferred into a new 15-mL centrifuge tube and flash-frozen in liquid nitrogen. All samples were freeze-dried for two days, after which dried material was re-suspended in 500 µL of methanol: water: formic acid (50: 49.9: 0.1, v/v/v), sonicated at 4 °C for 20 min, vortexed, transferred into 2-mL microtubes and centrifuged (15

Rhizosphere metabolomics

min, 14,000 *g*, 4 °C). Final supernatants (180 µL) were transferred into glass vials containing a glass insert before injection through the UPLC system. UPLC-Q-TOF analysis was conducted in ESI⁻ as described above. For DIMBOA targeted quantitation, a purified and NMR-verified standard (Ahmad *et al.*, 2011) was run alongside the samples. Metabolomics data were normalised for soil amount (*n* = 6), and subsequent analysis performed with MetaboAnalyst (v. 3.0), as described above (*i.e.* median normalisation, cube-root transformation, Pareto scaling).

, sis μ, ation, cube-ro.