208 research outputs found
An innovative quick solidifying technique for the forensic investigation of brain circulation using addition silicones
Post-mortem study of the brain is extremely relevant to medico-legal autopsies. However, it can be difficult to handle due to its fragility. This article presents a study on the development of an arterial solidifying technique that can be applied to analyze arterial circulation, consequently easing the handling and later diagnosis of diseases in this anatomical site. Vinylpolysiloxane silicone is introduced into the internal carotid arteries until it completely fills the arterial tree, creating a detailed model of the arterial's internal anatomy. This technique is fast, easy to apply and requires no previous tissue fixation. In addition, it allows for further toxicological and pathological tests. In conclusion, this technique represents a simple, sensitive and efficient method to employ in conventional autopsies, which can help in the diagnosis of death
The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and Te-based literature data
The use of IFS is since recently allowing to measure the emission line fluxes
of an increasingly large number of star-forming galaxies both locally and at
high redshift. The main goal of this study is to review the most widely used
empirical oxygen calibrations, O3N2 and N2, by using new direct abundance
measurements. We pay special attention to the expected uncertainty of these
calibrations as a function of the index value or abundance derived and the
presence of possible systematic offsets. This is possible thanks to the
analysis of the most ambitious compilation of Te-based HII regions to date.
This new dataset compiles the Te-based abundances of 603 HII regions extracted
from the literature but also includes new measurements from the CALIFA survey.
Besides providing new and improved empirical calibrations for the gas
abundance, we also present here a comparison between our revisited calibrations
with a total of 3423 additional CALIFA HII complexes with abundances derived
using the ONS calibration by Pilyugin et al. (2010). The combined analysis of
Te-based and ONS abundances allows us to derive their most accurate calibration
to date for both the O3N2 and N2 single-ratio indicators, in terms of all
statistical significance, quality and coverage of the space of parameters. In
particular, we infer that these indicators show shallower abundance
dependencies and statistically-significant offsets compared to those of Pettini
and Pagel (2004), Nagao et al. (2006) and P\'erez-Montero and Contini (2009).
The O3N2 and N2 indicators can be empirically applied to derive oxygen
abundances calibrations from either direct abundance determinations with random
errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a
large amount of data) reaching an average precision of 0.08 and 0.09 dex
(random) and 0.02 and 0.08 dex (systematic; compared to the direct
estimations),respectively.Comment: 12 pages, 5 figures, accepted for publication in A&
The second flight of the SUNRISE balloon-borne solar observatory: overview of instrument updates, the flight, the data and first results
The SUNRISE balloon-borne solar observatory, consisting of a 1~m aperture
telescope that provided a stabilized image to a UV filter imager and an imaging
vector polarimeter, carried out its second science flight in June 2013. It
provided observations of parts of active regions at high spatial resolution,
including the first high-resolution images in the Mg~{\sc ii}~k line. The
obtained data are of very high quality, with the best UV images reaching the
diffraction limit of the telescope at 3000~\AA\ after Multi-Frame Blind
Deconvolution reconstruction accounting for phase-diversity information. Here a
brief update is given of the instruments and the data reduction techniques,
which includes an inversion of the polarimetric data. Mainly those aspects that
evolved compared with the first flight are described. A tabular overview of the
observations is given. In addition, an example time series of a part of the
emerging active region NOAA AR~11768 observed relatively close to disk centre
is described and discussed in some detail. The observations cover the pores in
the trailing polarity of the active region, as well as the polarity inversion
line where flux emergence was ongoing and a small flare-like brightening
occurred in the course of the time series. The pores are found to contain
magnetic field strengths ranging up to 2500~G and, while large pores are
clearly darker and cooler than the quiet Sun in all layers of the photosphere,
the temperature and brightness of small pores approach or even exceed those of
the quiet Sun in the upper photosphere.Comment: Accepted for publication in The Astrophysical Journa
Stereoscopic disambiguation of vector magnetograms: first applications to SO/PHI-HRT data
Spectropolarimetric reconstructions of the photospheric vector magnetic field
are intrinsically limited by the 180-ambiguity in the orientation of
the transverse component. So far, the removal of such an ambiguity has required
assumptions about the properties of the photospheric field, which makes
disambiguation methods model-dependent. The basic idea is that the unambiguous
line-of-sight component of the field measured from one vantage point will
generally have a non-zero projection on the ambiguous transverse component
measured by the second telescope, thereby determining the ``true'' orientation
of the transverse field. Such an idea was developed and implemented in the
Stereoscopic Disambiguation Method (SDM), which was recently tested using
numerical simulations. In this work we present a first application of the SDM
to data obtained by the High Resolution Telescope (HRT) onboard Solar Orbiter
during the March 2022 campaign, when the angle with Earth was 27 degrees. The
method is successfully applied to remove the ambiguity in the transverse
component of the vector magnetogram solely using observations (from HRT and
from the Helioseismic and Magnetic Imager), for the first time. The SDM is
proven to provide observation-only disambiguated vector magnetograms that are
spatially homogeneous and consistent. A discussion about the sources of error
that may limit the accuracy of the method, and of the strategies to remove them
in future applications, is also presented.Comment: 32 pages, 12 figures, accepted in A&A on 09/07/202
Magnetic fields inferred by Solar Orbiter: A comparison between SO/PHI-HRT and SDO/HMI
The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic
Imager on board the Solar Orbiter spacecraft (SO/PHI) and the Helioseismic and
Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) both infer
the photospheric magnetic field from polarised light images. SO/PHI is the
first magnetograph to move out of the Sun--Earth line and will provide
unprecedented access to the Sun's poles. This provides excellent opportunities
for new research wherein the magnetic field maps from both instruments are used
simultaneously. We aim to compare the magnetic field maps from these two
instruments and discuss any possible differences between them. We used data
from both instruments obtained during Solar Orbiter's inferior conjunction on 7
March 2022. The HRT data were additionally treated for geometric distortion and
degraded to the same resolution as HMI. The HMI data were re-projected to
correct for the separation between the two observatories.
SO/PHI-HRT and HMI produce remarkably similar line-of-sight magnetograms, with
a slope coefficient of , an offset below G, and a Pearson correlation
coefficient of . However, SO/PHI-HRT infers weaker line-of-sight fields
for the strongest fields. As for the vector magnetic field, SO/PHI-HRT was
compared to both the -second and -second HMI vector magnetic field:
SO/PHI-HRT has a closer alignment with the -second HMI vector. In the weak
signal regime ( G), SO/PHI-HRT measures stronger and more horizontal
fields than HMI, very likely due to the greater noise in the SO/PHI-HRT data.
In the strong field regime ( G), HRT infers lower field strengths
but with similar inclinations (a slope of ) and azimuths (a slope of
). The slope values are from the comparison with the HMI -second
vector.Comment: 10 pages, 5 figures, accepted for publication in A&A; manuscript is a
part of Astronomy & Astrophysics special issue: Solar Orbiter First Results
(Nominal Mission Phase
MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting ready for the telescope
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma that is being built by a Consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). The instrument is currently finishing AIV and will be sent to GTC on November 2016 for its on-sky commissioning on April 2017. The MEGARA IFU fiber bundle (LCB) covers 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec while the MEGARA MOS mode allows observing up to 92 objects in a region of 3.5x3.5 arcmin2 around the IFU. The IFU and MOS modes of MEGARA will provide identical intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3700-9800ÅÅ. An x-y mechanism placed at the pseudo-slit position allows (1) exchanging between the two observing modes and (2) focusing the spectrograph for each VPH setup. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts a 4kx4k 15-μm CCD. The unique characteristics of MEGARA in terms of throughput and versatility and the unsurpassed collecting are of GTC make of this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. In these proceedings we present a summary of the instrument characteristics and the results from the AIV phase. All subsystems have been successfully integrated and the system-level AIV phase is progressing as expected
Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes
The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR
Intensity contrast of solar network and faculae close to the solar limb, observed from two vantage points
The brightness of faculae and network depends on the angle at which they are
observed and the magnetic flux density. Close to the limb, assessment of this
relationship has until now been hindered by the increasingly lower signal in
magnetograms. This preliminary study aims at highlighting the potential of
using simultaneous observations from different vantage points to better
determine the properties of faculae close to the limb. We use data from the
Solar Orbiter/Polarimetric and Helioseismic Imager (SO/PHI), and the Solar
Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI), recorded at
angular separation of their lines of sight at the Sun. We use
continuum intensity observed close to the limb by SO/PHI and complement it with
the co-observed from SDO/HMI, originating closer to disc centre
(as seen by SDO/HMI), thus avoiding the degradation of the magnetic field
signal near the limb. We derived the dependence of facular brightness in the
continuum on disc position and magnetic flux density from the combined
observations of SO/PHI and SDO/HMI. Compared with a single point of view, we
were able to obtain contrast values reaching closer to the limb and to lower
field strengths. We find the general dependence of the limb distance at which
the contrast is maximum on the flux density to be at large in line with single
viewpoint observations, in that the higher the flux density is, the closer the
turning point lies to the limb. There is a tendency, however, for the maximum
to be reached closer to the limb when determined from two vantage points. We
note that due to the preliminary nature of this study, these results must be
taken with caution. Our analysis shows that studies involving two viewpoints
can significantly improve the detection of faculae near the solar limb and the
determination of their brightness contrast relative to the quiet Sun
The ratio of horizontal to vertical displacement in solar oscillations estimated from combined SO/PHI and SDO/HMI observations
In order to make accurate inferences about the solar interior using
helioseismology, it is essential to understand all the relevant physical
effects on the observations. One effect to understand is the (complex-valued)
ratio of the horizontal to vertical displacement of the p- and f-modes at the
height at which they are observed. Unfortunately, it is impossible to measure
this ratio directly from a single vantage point, and it has been difficult to
disentangle observationally from other effects. In this paper we attempt to
measure the ratio directly using 7.5 hours of simultaneous observations from
the Polarimetric and Helioseismic Imager on board Solar Orbiter and the
Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. While
image geometry problems make it difficult to determine the exact ratio, it
appears to agree well with that expected from adiabatic oscillations in a
standard solar model. On the other hand it does not agree with a commonly used
approximation, indicating that this approximation should not be used in
helioseismic analyses. In addition, the ratio appears to be real-valued.Comment: Accepted for publication in Astronomy & Astrophysics. 8 pages, 8
figure
- …