82 research outputs found

    Diagnosis of Transient/Latent HPV Infections - A Point of View!

    Get PDF
    © 2018 IMSS Diagnosis of transient/latent HPV infections requires a rethinking of ideas concerning the host virus relationship. With this in mind, we address several concepts, such as mutualism and commensalism, to understand better the different stages of development, in addition to briefly covering current methods of detection. We suggest analyzing molecules related to the innate immune response for earlier diagnosis

    Porous carbons-derived from vegetal biomass in the synthesis of quinoxalines. Mechanistic insights.

    Get PDF
    We report herein for the first-time acid biomass-derived carbons from vegetal biomass, with high developed porosity, prepared through the integrating method comprising pyrolysis and surface phosphonation, able to efficiently catalyze the synthesis of quinoxalines from 1,2-diamines and -hydroxi ketones, under aerobic conditions. The obtained results indicate that the type and number of acid sites drive the reaction in terms of conversion and selectivity. Furthermore, our experimental and theoretical observations suggest that the preferred reaction pathway for this transformation, in the presence of the investigated acid carbon catalysts, involves cascade reactions including imination reaction between reactants, successive imine-enamine and ceto-enol tautomerisms, heterocyclization followed by dehydration, and aromatization. While the acid sites seem to be a relevant role in each reaction step, the system formed by activated carbon and molecular oxygen could be behind the last oxidative reaction to give quinoxalines.pre-print615 K

    Synthesis and characterization of polymer/silica/QDs fluorescent nanocomposites with potential application as printing toner

    Get PDF
    In this work cadmium telluride quantum dots (CdTeQDs) were prepared via one-pot synthesis microwave assisted. Afterwards, CdTeQDs/silica (SiO2)/nigrosine (nigro)/poly (styrene co-methyl methacrylate) (PSCMM) fluorescent nanocomposite (CSNP) powders were prepared via ultrasonic treatment and post drying at 60 °C. The samples were characterized by UV-vis absorbance, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Finally, successful printing tests were performed on security paper at 130 °C. These results show the potential of this nanocomposite to be used as security toner. This printing toner configuration is reported for first time

    Nanoalloying in real time: a high resolution STEM and computer simulation study

    Get PDF
    Bimetallic nanoparticles constitute a promising type of catalysts, mainly because their physical and chemical properties may be tuned by varying their chemical composition, atomic ordering, and size. Today, the design of novel nanocatalysts is possible through a combination of virtual lab simulations on massive parallel computing and modern electron microscopy with picometre resolution on one hand, and the capability of chemical analysis at the atomic scale on the other. In this work we show how the combination of theoretical calculations and characterization can solve some of the paradoxes reported about nanocatalysts: Au-Pd bimetallic nanoparticles. In particular, we demonstrate the key role played by adsorbates, such as carbon monoxide (CO), on the structure of nanoalloys. Our results imply that surface condition of nanoparticles during synthesis is a parameter of paramount importance.Fil: Mariscal, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Mayoral, Alba. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; EspañaFil: Olmos Asar, Jimena Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Magen, César. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; EspañaFil: Mejia Rosales, Sergio Javier. Universidad Autónoma de Nuevo León; MéxicoFil: Pérez Tijerina, Eduardo. Universidad Autónoma de Nuevo León; MéxicoFil: José Yacamán, Miguel. University of Texas; Estados Unido

    Monitoring new long-lasting intravitreal formulation for glaucoma with vitreous images using optical coherence tomography

    Get PDF
    Intravitreal injection is the gold standard therapeutic option for posterior segment patholo-gies, and long-lasting release is necessary to avoid reinjections. There is no effective intravitreal treatment for glaucoma or other optic neuropathies in daily practice, nor is there a non-invasive method to monitor drug levels in the vitreous. Here we show that a glaucoma treatment combining a hypotensive and neuroprotective intravitreal formulation (IF) of brimonidine–Laponite (BRI/LAP) can be monitored non-invasively using vitreoretinal interface imaging captured with optical coherence tomography (OCT) over 24 weeks of follow-up. Qualitative and quantitative characterisation was achieved by analysing the changes in vitreous (VIT) signal intensity, expressed as a ratio of retinal pigment epithelium (RPE) intensity. Vitreous hyperreflective aggregates mixed in the vitreous and tended to settle on the retinal surface. Relative intensity and aggregate size progressively decreased over 24 weeks in treated rat eyes as the BRI/LAP IF degraded. VIT/RPE relative intensity and total aggregate area correlated with brimonidine levels measured in the eye. The OCT-derived VIT/RPE relative intensity may be a useful and objective marker for non-invasive monitoring of BRI/LAP IF

    Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption

    Get PDF
    ETH authors thanks for the grant ETH 33 15-1. PE and JČ acknowledge the financial support from the Czech Science Foundation (P106/12/0189). JPR and JČ gratefully acknowledge the financial support from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement no. 604307. HRTEM characterization was performed at the Advanced Microscopy Laboratory (LMA) and the research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3).The advanced investigation of pore networks in isoreticular zeolites and mesoporous materials related to the IPC family was performed using high-resolution argon adsorption experiments coupled with the development of a state-of-the-art non-local density functional theory approach. The optimization of a kernel for model sorption isotherms for materials possessing the same layer structure, differing only in the interlayer connectivity (e.g. oxygen bridges, single- or double-four-ring building units, mesoscale pillars etc.) revealed remarkable differences in their porous systems. Using high-resolution adsorption data, the bimodal pore size distribution consistent with crystallographic data for IPC-6, IPC-7 and UTL samples is shown for the first time. A dynamic assessment by positron annihilation lifetime spectroscopy (PALS) provided complementary insights, simply distinguishing the enhanced accessibility of the pore network in samples incorporating mesoscale pillars and revealing the presence of a certain fraction of micropores undetected by gas sorption. Nonetheless, subtle differences in the pore size could not be discriminated based on the widely-applied Tao-Eldrup model. The combination of both methods can be useful for the advanced characterization of microporous, mesoporous and hierarchical materials.PostprintPeer reviewe

    G-arylated hydrogen-bonded cyclic tetramer assemblies with remarkable thermodynamic and kinetic stability

    Full text link
    The preparation and self-assembly of novel G-C dinucleoside monomers that are equipped with electron-poor aryl groups at the G-N2 amino group have been studied. Such monomers associate via Watson-Crick H-bonding into discrete unstrained tetrameric macrocycles that arise as a thermodynamically and kinetically stabilized product in a wide variety of experimental conditions, including very polar solvent environments and low concentrations. G-arylation produces an increased stability of the cyclic assembly, as a result of a subtle interplay between enthalpic and entropic effects involving the solvent coordination sphereFunding from the European Research Council (ERC-StG 279548) and MINECO (CTQ2011-23659) is gratefully acknowledge

    Estado actual de la investigación arqueometalúrgica prehistórica en la provincia de Málaga

    Get PDF
    The lack of data on prehistoric metallurgical activities in Málaga made local prehistorians think that all the metal artefacts recovered in the province were of non-local origin. As a result of a project funded by the Junta de Andalucía, new data have been collected and we can begin to outline the development and socioeconomic importance that metal technologies have in different parts of Málaga throughout prehistory.La práctica inexistencia de datos sobre actividades metalúrgicas prehistóricas en Málaga y el vacío investigador que sobre este aspecto existía en la provincia habían creado un estado de opinión entre los prehistoriadores locales tendente a considerar como de origen extraprovincial la totalidad de los artefactos metálicos prehistóricos recuperados. Como resultado de un proyecto subvencionado por la Junta de Andalucía, estos datos que faltaban comienzan ahora a ser recuperados, y se puede empezar a trazar un esbozo general del desarrollo e importancia socieconómica que este grupo de tecnologías tuvieron en los diversos ambientes geográficos de la provincia de Málaga durante la prehistoria
    corecore