7 research outputs found

    Non-conventional yeasts as hosts for heterologous protein production

    Get PDF
    Creative Commons-Attribution-Non-Commercial-Share Alike 3.0 Spain.-- et al.Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces ccrevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers' yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansennla polymorpha and Picliia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae. © Springer-Verlag 1998.This work was partially supported by grants from the CICYT (BIO92-0304 and BIO 95-0518) and EU (BIO4-CT96-0003).Peer Reviewe

    Non-conventional yeasts as hosts for heterologous protein production.

    Get PDF
    Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces cerevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers' yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae.Spanish Society for Microbiolog

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Factors Affecting the Morphogenetic Switch in Yarrowia lipolytica

    No full text

    Factors affecting the morphogenetic switch in Yarrowia lipolytica

    No full text
    Yarrowia lipolytica is a dimorphic yeast usually isolated from dairy products. Here we described methods for inducing in a homogeneous way a true yeast-hypha transition in liquid medium. As a first step, the cells must be synchronized in the G1 phase of the cell cycle by nitrogen starvation. Using either N-acetylglucosamine (GlcNAc) or serum as the only carbon sources, more than 90% of the cells form hypha after 4-6 h of incubation. Bovine albumin is also able to induce the yeast-hypha transition, although to a lesser extent. The addition of glucose to cultures growing with GlcNAc arrest the morphogenetic switch but not when added to cultures growing in the presence of serum. Serum also induces invasive growth in solid medium. Neither pH, nitrogen starvation, nor temperature play a relevant role in the morphogenetic switch. Our results suggest that, as occurs in Candida albicans, at least two morphogenetic signal pathways exist in Y. lipolytica.This work was partially supported by Grants from the DGICYT (PB94-1384), Junta de Castilla y León (SA 46/99), and EU (BMH4-CT96-0310). FM Pérez-Campo was supported by a fellowship from the Ministerio Español de Educación y Ciencia.Peer Reviewe
    corecore