43 research outputs found

    The nature of the ISM in galaxies during the star-formation activity peak of the Universe

    Get PDF
    We combine a semi-analytic model of galaxy formation, tracking atomic and molecular phases of cold gas, with a three-dimensional radiative-transfer and line tracing code to study the sub-mm emission from atomic and molecular species (CO, HCN, [CI], [CII], [OI]) in galaxies. We compare the physics that drives the formation of stars at the epoch of peak star formation (SF) in the Universe (z = 2.0) with that in local galaxies. We find that normal star-forming galaxies at high redshift have much higher CO-excitation peaks than their local counterparts and that CO cooling takes place at higher excitation levels. CO line ratios increase with redshift as a function of galaxy star-formation rate, but are well correlated with H2 surface density independent of redshift. We find an increase in the [OI]/[CII] line ratio in typical star-forming galaxies at z = 1.2 and z = 2.0 with respect to counterparts at z = 0. Our model results suggest that typical star-forming galaxies at high redshift consist of much denser and warmer star-forming clouds than their local counterparts. Galaxies belonging to the tail of the SF activity peak at z = 1.2 are already less dense and cooler than counterparts during the actual peak of SF activity (z = 2.0). We use our results to discuss how future ALMA surveys can best confront our predictions and constrain models of galaxy formation.Comment: 19 pages, 14 figures, accepted for publication in MNRA

    A survey of HC_3N in extragalactic sources: Is HC_3N a tracer of activity in ULIRGs?

    Get PDF
    Context. HC_3N is a molecule that is mainly associated with Galactic star-forming regions, but it has also been detected in extragalactic environments. Aims. To present the first extragalactic survey of HC_3N, when combining earlier data from the literature with six new single-dish detections, and to compare HC_3N with other molecular tracers (HCN, HNC), as well as other properties (silicate absorption strength, IR flux density ratios, C_(II) flux, and megamaser activity). Methods. We present mm IRAM 30 m, OSO 20 m, and SEST observations of HC_3N rotational lines (mainly the J = 10–9 transition) and of the J = 1–0 transitions of HCN and HNC. Our combined HC_3N data account for 13 galaxies (excluding the upper limits reported for the non-detections), while we have HCN and HNC data for more than 20 galaxies. Results. A preliminary definition “HC_3N-luminous galaxy” is made based upon the HC_3N/HCN ratio. Most (~80%) HC_3N-luminous galaxies seem to be deeply obscured galaxies and (U)LIRGs. A majority (~60% or more) of the HC3N-luminous galaxies in the sample present OH mega- or strong kilomaser activity. A possible explanation is that both HC_3N and OH megamasers need warm dust for their excitation. Alternatively, the dust that excites the OH megamaser offers protection against UV destruction of HC_3N. A high silicate absorption strength is also found in several of the HC_3N-luminous objects, which may help the HC3N to survive. Finally, we find that a high HC_3N/HCN ratio is related to a high dust temperature and a low C_(II) flux

    Observational study of hydrocarbons in the bright photodissociation region of Messier 8

    Full text link
    Hydrocarbons are ubiquitous in the interstellar medium, but their formation is still not well understood, depending on the physical environment they are found in. M8 is host to one of the brightest HII regions and PDRs in our galaxy. Using the APEX, and the IRAM 30 m telescopes, we performed a line survey toward Herschel 36 (Her 36), which is the main ionizing stellar system in M8, and an imaging survey within 1.3 ×\times 1.3 pc around Her 36 of various transitions of C2_{2}H and c-C3_{3}H2_{2}. We used both LTE and non-LTE methods to determine the physical conditions of the emitting gas along with the column densities and abundances of the observed species, which we compared with (updated) gas phase photochemical PDR models. In order to examine the role of PAHs in the formation of small hydrocarbons and to investigate their association with M8, we compared archival GLIMPSE 8 μ\mum and the SPIRE 250 μ\mum continuum images with the C2_{2}H emission maps. We observed a total of three rotational transitions of C2_{2}H with their hyperfine structure components and four rotational transitions of c-C3_{3}H2_{2} with ortho and para symmetries toward M8. Fragmentation of PAHs seems less likely to contribute to the formation of small hydrocarbons as the 8 μ\mum emission does not follow the distribution of C2_{2}H emission, which is more associated with the molecular cloud. From the quantitative analysis, we obtained abundances of \sim 108^{-8} and 109^{-9} for C2_{2}H and c-C3_{3}H2_{2} respectively, and volume densities of the hydrocarbon emitting gas in the range n(H2)n(\rm H_2) \sim 5 ×\times 104^{4}--5 ×\times 106^{6} cm3^{-3}. The observed column densities of C2_{2}H and c-C3_3H2_{2} are reproduced reasonably well by our PDR models. This supports the idea that in high-UV flux PDRs, gas phase chemistry is sufficient to explain hydrocarbon abundances.Comment: 14 pages, 10 figure

    The ionized and hot gas in M17 SW: SOFIA/GREAT THz observations of [C II] and 12CO J=13-12

    Full text link
    With new THz maps that cover an area of ~3.3x2.1 pc^2 we probe the spatial distribution and association of the ionized, neutral and molecular gas components in the M17 SW nebula. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain a 5'.7x3'.7 map of the 12CO J=13-12 transition and the [C II] 158 um fine-structure line in M17 SW and compare the spectroscopically resolved maps with corresponding ground-based data for low- and mid-J CO and [C I] emission. For the first time SOFIA/GREAT allow us to compare velocity-resolved [C II] emission maps with molecular tracers. We see a large part of the [C II] emission, both spatially and in velocity, that is completely non-associated with the other tracers of photon-dominated regions (PDR). Only particular narrow channel maps of the velocity-resolved [C II] spectra show a correlation between the different gas components, which is not seen at all in the integrated intensity maps. These show different morphology in all lines but give hardly any information on the origin of the emission. The [C II] 158 um emission extends for more than 2 pc into the M17 SW molecular cloud and its line profile covers a broader velocity range than the 12CO J=13-12 and [C I] emissions, which we interpret as several clumps and layers of ionized carbon gas within the telescope beam. The high-J CO emission emerges from a dense region between the ionized and neutral carbon emissions, indicating the presence of high-density clumps that allow the fast formation of hot CO in the irradiated complex structure of M17 SW. The [C II] observations in the southern PDR cannot be explained with stratified nor clumpy PDR models.Comment: 4 pages, 4 figures, letter accepted for the SOFIA/GREAT A&A 2012 special issu

    Disentangling the excitation conditions of the dense gas in M17 SW

    Get PDF
    We probe the chemical and energetic conditions in dense gas created by radiative feedback through observations of multiple CO, HCN and HCO+^+ transitions toward the dense core of M17 SW. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain maps of the J=1615J=16-15, J=1211J=12-11, and J=1110J=11-10 transitions of 12^{12}CO. We compare these maps with corresponding APEX and IRAM 30m telescope data for low- and mid-JJ CO, HCN and HCO+^+ emission lines, including maps of the HCN J=87J=8-7 and HCO+^+ J=98J=9-8 transitions. The excitation conditions of 12^{12}CO, HCO+^+ and HCN are estimated with a two-phase non-LTE radiative transfer model of the line spectral energy distributions (LSEDs) at four selected positions. The energy balance at these positions is also studied. We obtained extensive LSEDs for the CO, HCN and HCO+^+ molecules toward M17 SW. The LSED shape, particularly the high-JJ tail of the CO lines observed with SOFIA/GREAT, is distinctive for the underlying excitation conditions. The critical magnetic field criterion implies that the cold cloudlets at two positions are partially controlled by processes that create and dissipate internal motions. Supersonic but sub-Alfv\'enic velocities in the cold component at most selected positions indicates that internal motions are likely MHD waves. Magnetic pressure dominates thermal pressure in both gas components at all selected positions, assuming random orientation of the magnetic field. The magnetic pressure of a constant magnetic field throughout all the gas phases can support the total internal pressure of the cold components, but it cannot support the internal pressure of the warm components. If the magnetic field scales as Bn2/3B \propto n^{2/3}, then the evolution of the cold cloudlets at two selected positions, and the warm cloudlets at all selected positions, will be determined by ambipolar diffusion.Comment: 26 pages, 13 figures, A&A accepte

    Studying the effects and cause of the massive star formation in Messier 8 East

    Full text link
    Messier 8 (M8), one of the brightest HII regions in our Galaxy, is associated with two prominent massive star-forming regions: M8-Main, the particularly bright part of the large scale HII region (mainly) ionised by the stellar system Herschel 36 (Her 36) and M8 East (M8 E), which is mainly powered by a deeply embedded young stellar object (YSO), a bright infrared (IR) source, M8E-IR. We aim to study the interaction of the massive star-forming region M8 E with its surroundings and to compare the star-forming environments of M8-Main and M8 E. We used the IRAM 30 m telescope to perform an imaging spectroscopy survey of the molecular environment of M8E-IR. We imaged and analysed data for the JJ = 1 \to 0 rotational transitions of 12^{12}CO, 13^{13}CO, N2_2H+^+, HCN, H13^{13}CN, HCO+^+, H13^{13}CO+^+, HNC and HN13^{13}C observed for the first time toward M8~E. We used LTE and non-LTE techniques to determine column densities of the observed species and to constrain the physical conditions of the gas responsible for their emission. Examining the YSO population in M8~E allows us to explore the observed ionization front (IF) as seen in GLIMPSE 8~μ\mum emission image. We find that 12^{12}CO probes the warm diffuse gas also traced by the GLIMPSE 8~μ\mum emission, while N2_2H+^+ and HN13^{13}C trace the cool and dense gas. We find that the star-formation in M8~E appears to be triggered by the earlier formed stellar cluster NGC~6530, which powers an HII region giving rise to an IF that is moving at a speed \geq 0.26~km~s1^{-1} across M8~E. We derive temperatures of 80 K and 30 K for the warm and cool gas components, respectively, and constrain H2_2 volume densities to be in the range of 104^4--106^6~cm3^{-3}. Comparison of the observed abundances of various species reflects the fact that M8~E is at an earlier stage of massive star formation than M8-Main

    Probing X-ray irradiation in the nucleus of NGC 1068 with observations of high-J lines of dense gas tracers

    Get PDF
    With the incorporation of high-J molecular lines, we aim to constrain the physical conditions of the dense gas in the central region of the Seyfert 2 galaxy NGC 1068 and to determine signatures of the AGN or the starburst contribution. We used the James Clerk Maxwell Telescope to observe the J=4-3 transition of HCN, HNC, and HCO+, as well as the CN N_J=2_{5/2}-1_{3/2} and N_J=3_{5/2}-2_{5/2}, in NGC 1068. We estimate the excitation conditions of HCN, HNC, and CN, based on the line intensity ratios and radiative transfer models. We find that the bulk emission of HCN, HNC, CN, and the high-J HCO+ emerge from dense gas n(H_2)>=10^5 cm^-3). However, the low-J HCO+ lines (dominating the HCO+ column density) trace less dense (n(H_2)<10^5 cm^-3) and colder (T_K30 K) gas than the other molecules. The HCO+ J=4-3 line intensity, compared with the lower transition lines and with the HCN J=4-3 line, support the influence of a local XDR environment. The estimated N(CN)/N(HCN)~1-4 column density ratios are indicative of an XDR/AGN environment with a possible contribution of grain-surface chemistry induced by X-rays or shocks.Comment: Main text: 8 pages, 5 tables, 1 figure. Appendix: 7 pages, 1 table, 8 figures. Accepted for publication in A&

    The deeply obscured AGN of NGC4945 I. Spitzer-IRS maps of [Ne V], [Ne II], H2 0-0 S(1), S(2), and other tracers

    Get PDF
    The nearly edge-on galaxy NGC4945 is one of the closest galaxies where an AGN and starburst coexist, and is one of the brightest sources at 100 keV. Near and mid-infrared spectroscopy have shown very strong obscuration of its central region, rivaled only in strength by some of the most deeply obscured ULIRGs. We aim to determine the spatial distribution of ISM features in the central 426x426 pc^2 of NGC4945. We map the central region of NGC4945 in three Spitzer-IRS modules (SH, SL and LL). We produce maps of the flux distribution of the starburst tracers [Ne II], [Ne III], [S III] and [S IV] at 12.81, 15.56, 18.71 and 10.51 mum, respectively, and a map of the AGN narrow-line region tracer [Ne V] at 14.32 mum. We also mapped the S(1), S(2) and S(3) pure rotational lines of H2, which trace the distribution of warm molecular hydrogen. We obtained an extinction map (A_V) based on the apparent strength of the 9.7 mum silicate absorption feature. Our A_V map traces the contours of the starburst ring but the highest extinction (A_V(9.85 mum)~60) is found at the nucleus. Within the uncertainty of the astrometry all emission lines are found to peak on the nucleus, except for the warm molecular hydrogen emission which shows a maximum 60-100 pc NW of the nucleus. We favour a scenario in which the lower H2 0-0 S(1) and S(2) rotational lines originate mainly from an unobscured extra-nuclear component associated with the super-wind cone observed in the HST NICMOS map of the H2 1-0 S(1) vibrational line. For the [Ne V] emission we infer an attenuation of a factor 12-160 (A_V=55-112) based on a comparison of the ratio of our [Ne V] flux and the absorption-corrected 14-195 keV Swift-BAT flux to the average [Ne V]/BAT ratio for Seyfert 1 nuclei. The high attenuation indicates that [Ne V] and [O IV] cannot be used as extinction-free tracers of AGN power in galaxies with deeply buried nuclei.Comment: 19 pages, 16 figures, accepted for publication in A&

    A thorough view of the nuclear region of NGC 253 - Combined Herschel, SOFIA and APEX dataset

    Full text link
    We present a large set of spectral lines detected in the 40"40" central region of the starburst galaxy NGC 253. Observations were obtained with the three instruments SPIRE, PACS and HIFI on board the Herschel Space Observatory, upGREAT on board of the SOFIA airborne observatory, and the ground based APEX telescope. Combining the spectral and photometry products of SPIRE and PACS we model the dust continuum Spectral Energy Distribution (SED) and the most complete 12^{12}CO Line SED reported so far toward the nuclear region of NGC 253. Properties and excitation of the molecular gas were derived from a three-component non-LTE radiative transfer model, using the SPIRE 13^{13}CO lines and ground based observations of the lower-JJ 13^{13}CO and HCN lines, to constrain the model parameters. Three dust temperatures were identified from the continuum emission, and three components are needed to fit the full CO LSED. Only the third CO component (fitting mostly the HCN and PACS 12^{12}CO lines) is consistent with a shock/mechanical heating scenario. A hot core chemistry is also argued as a plausible scenario to explain the high-JJ 12^{12}CO lines detected with PACS. The effect of enhanced cosmic ray ionization rates, however, cannot be ruled out, and is expected to play a significant role in the diffuse and dense gas chemistry. This is supported by the detection of ionic species like OH+^+ and H2_2O+^+, as well as the enhanced fluxes of the OH lines with respect to those of H2_2O lines detected in both PACS and SPIRE spectrum.Comment: 36 pages, 16 figures, submitted, reviewed and accepted for publication in the Astrophysical Journal on April 12th 201
    corecore