53 research outputs found

    Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegra dation of aromatic compounds

    Get PDF
    Supporting informationThe metabolic versatility of the soil bacterium Pseudomonas putida is reflected by its ability to execute strong redox reactions (e.g., mono- and di-oxygenations) on aromatic substrates. Biodegradation of aromatics occurs via the pathway encoded in the archetypal TOL plasmid pWW0, yet the effect of running such oxidative route on redox balance against the background metabolism of P. putida remains unexplored. To answer this question, the activity of pyridine nucleotide transhydrogenases (that catalyze the reversible interconversion of NADH and NADPH) was inspected under various physiological and oxidative stress regimes. The genome of P. putida KT2440 encodes a soluble transhydrogenase (SthA) and a membrane-bound, proton-pumping counterpart (PntAB). Mutant strains, lacking sthA and/or pntAB, were subjected to a panoply of genetic, biochemical, phenomic and functional assays in cells grown on customary carbon sources (e.g., citrate) versus difficult-to-degrade aromatic substrates. The results consistently indicated that redox homeostasis is compromised in the transhydrogenases-defective variant, rendering the mutant sensitive to oxidants. This metabolic deficiency was, however, counteracted by an increase in the activity of NADP+ -dependent dehydrogenases in central carbon metabolism. Taken together, these observations demonstrate that transhydrogenases enable a redox-adjusting mechanism that comes into play when biodegradation reactions are executed to metabolize unusual carbon compounds.This work was supported by the EVOPROG (FP7-ICT-610730), ARISYS (ERC-2012-ADG-322797) and EmPowerPutida (EU-H2020-BIOTEC-2014-2015-6335536), Contracts of the European Union, and the CAMBIOS (RTC-2014-1777-3) and CONTIBUGS (PCIN-2013-040) projects of the Spanish Ministry of Economy and Competitiveness.Peer reviewe

    <i>Cupriavidus pinatubonensis</i> AEO106 deals with copper-induced oxidative stress before engaging in biodegradation of the herbicide 4-chloro-2-methylphenoxyacetic acid

    No full text
    Abstract Background Microbial degradation of phenoxy acid (PA) herbicides in agricultural soils is important to minimize herbicide leaching to groundwater reservoirs. Degradation may, however, be hampered by exposure of the degrader bacteria to toxic metals as copper (Cu) in the soil environment. Exposure to Cu leads to accumulation of intracellular reactive oxygen species (ROS) in some bacteria, but it is not known how Cu-derived ROS and an ensuing oxidative stress affect the degradation of PA herbicides. Based on the previously proposed paradigm that bacteria deal with environmental stress before they engage in biodegradation, we studied how the degradation of the PA herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) by the model PA degrader Cupriavidus pinatubonensis AEO106 was affected by Cu exposure. Results Exposure of C. pinatubonensis in batch culture to sublethal concentrations of Cu increased accumulation of ROS measured by the oxidant sensing probe 2,7-dichlorodihydrofluorescein diacetate and flow cytometry, and resulted in upregulation of a gene encoding a protein belong to the Ohr/OsmC protein family. The ohr/osmC gene was also highly induced by H2O2 exposure suggesting that it is involved in the oxidative stress response in C. pinatubonensis. The increased ROS accumulation and increased expression of the oxidative stress defense coincided with a delay in the catabolic performance, since both expression of the catabolic tfdA gene and MCPA mineralization were delayed compared to unexposed control cells. Conclusions The current study suggests that Cu-induced ROS accumulation in C. pinatubonensis activates a stress response involving the product of the ohr/osmC gene. Further, the stress response is launched before induction of the catabolic tfdA gene and mineralization occurs

    The Metabolic Redox Regime of <i>Pseudomonas putida</i> Tunes Its Evolvability toward Novel Xenobiotic Substrates

    Get PDF
    Some environmental bacteria evolve with new capacities for the aerobic biodegradation of chemical pollutants by adapting preexisting redox reactions to novel compounds. The process typically starts by cooption of enzymes from an available route to act on the chemical structure of the substrate-to-be. The critical bottleneck is generally the first biochemical step, and most of the selective pressure operates on reshaping the initial reaction. The interim uncoupling of the novel substrate to preexisting Rieske nonheme iron oxygenases usually results in formation of highly mutagenic ROS. In this work, we demonstrate that the background metabolic regime of the bacterium that hosts an evolving catabolic pathway (e.g., biodegradation of the xenobiotic 2,4-DNT) determines whether the cells either adopt a genetic diversification regime or a robust ROS-tolerant status. Furthermore, our results offer new perspectives to the rational design of efficient whole-cell biocatalysts, which are pursued in contemporary metabolic engineering.During evolution of biodegradation pathways for xenobiotic compounds involving Rieske nonheme iron oxygenases, the transition toward novel substrates is frequently associated with faulty reactions. Such events release reactive oxygen species (ROS), which are endowed with high mutagenic potential. In this study, we evaluated how the operation of the background metabolic network by an environmental bacterium may either foster or curtail the still-evolving pathway for 2,4-dinitrotoluene (2,4-DNT) catabolism. To this end, the genetically tractable strain Pseudomonas putida EM173 was implanted with the whole genetic complement necessary for the complete biodegradation of 2,4-DNT (recruited from the environmental isolate Burkholderia sp. R34). By using reporter technology and direct measurements of ROS formation, we observed that the engineered P. putida strain experienced oxidative stress when catabolizing the nitroaromatic substrate. However, the formation of ROS was neither translated into significant activation of the SOS response to DNA damage nor did it result in a mutagenic regime (unlike what has been observed in Burkholderia sp. R34, the original host of the pathway). To inspect whether the tolerance of P. putida to oxidative challenges could be traced to its characteristic reductive redox regime, we artificially altered the NAD(P)H pool by means of a water-forming, NADH-specific oxidase. Under the resulting low-NAD(P)H status, catabolism of 2,4-DNT triggered a conspicuous mutagenic and genomic diversification scenario. These results indicate that the background biochemical network of environmental bacteria ultimately determines the evolvability of metabolic pathways. Moreover, the data explain the efficacy of some bacteria (e.g., pseudomonads) to host and evolve with new catabolic routes

    The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader

    Get PDF
    BACKGROUND: Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. METHODOLOGY/PRINCIPAL FINDINGS: Its genome consists of four replicons (two chromosomes and two plasmids) containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000). Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation) seems to be shaped mostly by the acquisition of "specialized" plasmids. CONCLUSIONS/SIGNIFICANCE: The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation

    Novel Genes Involved in Resistance to Both Ultraviolet Radiation and Perchlorate From the Metagenomes of Hypersaline Environments

    Get PDF
    Microorganisms that thrive in hypersaline environments on the surface of our planet are exposed to the harmful effects of ultraviolet radiation. Therefore, for their protection, they have sunscreen pigments and highly efficient DNA repair and protection systems. The present study aimed to identify new genes involved in UV radiation resistance from these microorganisms, many of which cannot be cultured in the laboratory. Thus, a functional metagenomic approach was used and for this, small-insert libraries were constructed with DNA isolated from microorganisms of high-altitude Andean hypersaline lakes in Argentina (Diamante and Ojo Seco lakes, 4,589 and 3,200 m, respectively) and from the Es Trenc solar saltern in Spain. The libraries were hosted in a UV radiation-sensitive strain of Escherichia coli (recA mutant) and they were exposed to UVB. The resistant colonies were analyzed and as a result, four clones were identified with environmental DNA fragments containing five genes that conferred resistance to UV radiation in E. coli. One gene encoded a RecA-like protein, complementing the mutation in recA that makes the E. coli host strain more sensitive to UV radiation. Two other genes from the same DNA fragment encoded a TATA-box binding protein and an unknown protein, both responsible for UV resistance. Interestingly, two other genes from different and remote environments, the Ojo Seco Andean lake and the Es Trenc saltern, encoded two hypothetical proteins that can be considered homologous based on their significant amino acid similarity (49%). All of these genes also conferred resistance to 4-nitroquinoline 1-oxide (4-NQO), a compound that mimics the effect of UV radiation on DNA, and also to perchlorate, a powerful oxidant that can induce DNA damage. Furthermore, the hypothetical protein from the Es Trenc salterns was localized as discrete foci possibly associated with damaged sites in the DNA in cells treated with 4-NQO, so it could be involved in the repair of damaged DNA. In summary, novel genes involved in resistance to UV radiation, 4-NQO and perchlorate have been identified in this work and two of them encoding hypothetical proteins that could be involved in DNA damage repair activities not previously described.Fil: Lamprecht Grandío, María. Consejo Superior de Investigaciones Cientificas. Centro de Astrobiologia.; EspañaFil: Cortesão, Marta. Consejo Superior de Investigaciones Cientificas. Centro de Astrobiologia.; EspañaFil: Mirete, Salvador. Consejo Superior de Investigaciones Cientificas. Centro de Astrobiologia.; EspañaFil: Benguigui de la Cámara, Macarena. Consejo Superior de Investigaciones Cientificas. Centro de Astrobiologia.; EspañaFil: de Figueras, Carolina G.. Consejo Superior de Investigaciones Cientificas. Centro de Astrobiologia.; EspañaFil: Pérez Pantoja, Danilo. Universidad Tecnológica Metropolitana; EspañaFil: White, Joseph John. Consejo Superior de Investigaciones Cientificas. Centro de Astrobiologia.; EspañaFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Rosselló Móra, Ramon. Instituto Mediterráneo Estudios Avanzados; EspañaFil: González Pastor, José Eduardo. Consejo Superior de Investigaciones Cientificas. Centro de Astrobiologia.; Españ

    Diurnal Changes in Active Carbon and Nitrogen Pathways Along the Temperature Gradient in Porcelana Hot Spring Microbial Mat

    Get PDF
    Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H13CO3) and nitrogen (15NH4Cl and K15NO3) assimilation rates. The microbial mat community included 31 phyla, of which only Cyanobacteria and Chloroflexi were dominant. At 58°C both phyla co-occurred, with similar contributions in relative abundances in metagenomes and total transcriptional activity. At 66°C, filamentous anoxygenic phototrophic Chloroflexi were &gt;90% responsible for the total transcriptional activity recovered, while Cyanobacteria contributed most metagenomics and metatranscriptomics reads at 48°C. According to such reads, phototrophy was carried out both through oxygenic photosynthesis by Cyanobacteria (mostly Mastigocladus) and anoxygenic phototrophy due mainly to Chloroflexi. Inorganic carbon assimilation through the Calvin–Benson cycle was almost exclusively due to Mastigocladus, which was the main primary producer at lower temperatures. Two other CO2 fixation pathways were active at certain times and temperatures as indicated by transcripts: 3-hydroxypropionate (3-HP) bi-cycle due to Chloroflexi and 3-hydroxypropionate-4-hydroxybutyrate (HH) cycle carried out by Thaumarchaeota. The active transcription of the genes involved in these C-fixation pathways correlated with high in situ determined carbon fixation rates. In situ measurements of ammonia assimilation and nitrogen fixation (exclusively attributed to Cyanobacteria and mostly to Mastigocladus sp.) showed these were the most important nitrogen acquisition pathways at 58 and 48°C. At 66°C ammonia oxidation genes were actively transcribed (mostly due to Thaumarchaeota). Reads indicated that denitrification was present as a nitrogen sink at all temperatures and that dissimilatory nitrate reduction to ammonia (DNRA) contributed very little. The combination of metagenomic and metatranscriptomic analysis with in situ assimilation rates, allowed the reconstruction of day and night carbon and nitrogen assimilation pathways together with the contribution of keystone microorganisms in this natural hot spring microbial mat

    5to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica

    Get PDF
    El V Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2019, realizado del 6 al 8 de febrero de 2019 y organizado por la Universidad Politécnica Salesiana, ofreció a la comunidad académica nacional e internacional una plataforma de comunicación unificada, dirigida a cubrir los problemas teóricos y prácticos de mayor impacto en la sociedad moderna desde la ingeniería. En esta edición, dedicada a los 25 años de vida de la UPS, los ejes temáticos estuvieron relacionados con la aplicación de la ciencia, el desarrollo tecnológico y la innovación en cinco pilares fundamentales de nuestra sociedad: la industria, la movilidad, la sostenibilidad ambiental, la información y las telecomunicaciones. El comité científico estuvo conformado formado por 48 investigadores procedentes de diez países: España, Reino Unido, Italia, Bélgica, México, Venezuela, Colombia, Brasil, Estados Unidos y Ecuador. Fueron recibidas un centenar de contribuciones, de las cuales 39 fueron aprobadas en forma de ponencias y 15 en formato poster. Estas contribuciones fueron presentadas de forma oral ante toda la comunidad académica que se dio cita en el Congreso, quienes desde el aula magna, el auditorio y la sala de usos múltiples de la Universidad Politécnica Salesiana, cumplieron respetuosamente la responsabilidad de representar a toda la sociedad en la revisión, aceptación y validación del conocimiento nuevo que fue presentado en cada exposición por los investigadores. Paralelo a las sesiones técnicas, el Congreso contó con espacios de presentación de posters científicos y cinco workshops en temáticas de vanguardia que cautivaron la atención de nuestros docentes y estudiantes. También en el marco del evento se impartieron un total de ocho conferencias magistrales en temas tan actuales como la gestión del conocimiento en la universidad-ecosistema, los retos y oportunidades de la industria 4.0, los avances de la investigación básica y aplicada en mecatrónica para el estudio de robots de nueva generación, la optimización en ingeniería con técnicas multi-objetivo, el desarrollo de las redes avanzadas en Latinoamérica y los mundos, la contaminación del aire debido al tránsito vehicular, el radón y los riesgos que representa este gas radiactivo para la salud humana, entre otros

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response

    Get PDF
    [Background] Soil bacteria typically thrive in water-limited habitats that cause an inherent matric stress to the cognate cells. Matric stress gives rise to accumulation of intracellular reactive oxygen species (ROS), which in turn may induce oxidative stress, and even promote mutagenesis. However, little is known about the impact of ROS induced by water limitation on bacteria performing important processes as pollutant biodegradation in the environment. We have rigorously examined the physiological consequences of the rise of intracellular ROS caused by matric stress for the toluene- and xylene-degrading soil bacterium Pseudomonas putida mt-2.[Methods] For the current experiments, controlled matric potential stress was delivered to P. putida cells by addition of polyethylene glycol to liquid cultures, and ROS formation in individual cells monitored by a specific dye. The physiological response to ROS was then quantified by both RT-qPCR of RNA transcripts from genes accredited as proxies of oxidative stress and the SOS response along with cognate transcriptional GFP fusions to the promoters of the same genes.[Results] Extensive matric stress at −1.5 MPa clearly increased intracellular accumulation of ROS. The expression of the two major oxidative defense genes katA and ahpC, as well as the hydroperoxide resistance gene osmC, was induced under matric stress. Different induction profiles of the reporters were related to the severity of the stress. To determine if matric stress lead to induction of the SOS-response, we constructed a DNA damage-inducible bioreporter based on the LexA-controlled phage promoter PPP3901. According to bioreporter analysis, this gene was expressed during extensive matric stress. Despite this DNA-damage mediated gene induction, we observed no increase in the mutation frequency as monitored by emergence of rifampicin-resistant colonies.[Conclusions] Under conditions of extensive matric stress, we observed a direct link between matric stress, ROS formation, induction of ROS-detoxifying functions and (partial) activation of the SOS system. However, such a stress-response regime did not translate into a general DNA mutagenesis status. Taken together, the data suggest that P. putida mt-2 can cope with this archetypal environmental stress while preserving genome stability, a quality that strengthens the status of this bacterium for biotechnological purposes.The study was supported by the Villum Kann Rasmussen Foundation through the Center for Environmental and Agricultural Microbiology (CREAM), and the ST-FLOW, ARISYS and CONTIBUGS Projects of the 7th Framework Program of the EC to Víctor de LorenzoPeer reviewe

    Endogenous stress caused by faulty oxidation reactions fosters evolution of 2,4-dinitrotoluene-degrading bacteria.

    Get PDF
    Environmental strain Burkholderia sp. DNT mineralizes the xenobiotic compound 2,4-dinitrotoluene (DNT) owing to the catabolic dnt genes borne by plasmid DNT, but the process fails to promote significant growth. To investigate this lack of physiological return of such an otherwise complete metabolic route, cells were exposed to DNT under various growth conditions and the endogenous formation of reactive oxygen species (ROS) monitored in single bacteria. These tests revealed the buildup of a strong oxidative stress in the population exposed to DNT. By either curing the DNT plasmid or by overproducing the second activity of the biodegradation route (DntB) we could trace a large share of ROS production to the first reaction of the route, which is executed by the multicomponent dioxygenase encoded by the dntA gene cluster. Naphthalene, the ancestral substrate of the dioxygenase from which DntA has evolved, also caused significant ROS formation. That both the old and the new substrate brought about a considerable cellular stress was indicative of a still-evolving DntA enzyme which is neither optimal any longer for naphthalene nor entirely advantageous yet for growth of the host strain on DNT. We could associate endogenous production of ROS with likely error-prone repair mechanisms of DNA damage, and the ensuing stress-induced mutagenesis in cells exposed to DNT. It is thus plausible that the evolutionary roadmap for biodegradation of xenobiotic compounds like DNT was largely elicited by mutagenic oxidative stress caused by faulty reactions of precursor enzymes with novel but structurally related substrates-to-be
    corecore