45 research outputs found

    Central star formation and metallicity in CALIFA interacting galaxies

    Full text link
    We use optical integral-field spectroscopic (IFS) data from 103 nearby galaxies at different stages of the merging event, from close pairs to merger remnants provided by the CALIFA survey, to study the impact of the interaction in the specific star formation and oxygen abundance on different galactic scales. To disentangle the effect of the interaction and merger from internal processes, we compared our results with a control sample of 80 non-interacting galaxies. We confirm the moderate enhancement (2-3 times) of specific star formation for interacting galaxies in central regions as reported by previous studies; however, the specific star formation is comparable when observed in extended regions. We find that control and interacting star-forming galaxies have similar oxygen abundances in their central regions, when normalized to their stellar masses. Oxygen abundances of these interacting galaxies seem to decrease compared to the control objects at the large aperture sizes measured in effective radius. Although the enhancement in central star formation and lower metallicities for interacting galaxies have been attributed to tidally induced inflows, our results suggest that other processes such as stellar feedback can contribute to the metal enrichment in interacting galaxies.Comment: 9 pages, 9 figures. Accepted for publication in Astronomy & Astrophysic

    Spiral-like star-forming patterns in CALIFA early-type galaxies

    Full text link
    Based on a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data, we report on the detection of faint (24 < {\mu}r_r mag/arcsec2^2 < 26) star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies (ETGs). These features are of considerable interest because they document the still ongoing inside-out growth of some local ETGs and may add valuable observational insight into the origin and evolution of spiral structure in triaxial stellar systems. A characteristic property of the nebular component in the studied ETGs, classified i+, is a two-radial-zone structure, with the inner zone that displays faint (EW(H\alpha)\simeq1{\AA}) low-ionization nuclear emission-line region (LINER) properties, and the outer one (3{\AA}<EW(H\alpha)<~20{\AA}) HII-region characteristics. This spatial segregation of nebular emission in two physically distinct concentric zones calls for an examination of aperture effects in studies of type i+ ETGs with single-fiber spectroscopic data.Comment: Accepted to A&A, 5 pages, 1 figur

    Spectroscopic aperture biases in inside-out evolving early-type galaxies from CALIFA

    Get PDF
    Integral field spectroscopy studies based on CALIFA data have recently revealed the presence of ongoing low-level star formation (SF) in the periphery of ~10% of local early-type galaxies (ETGs), witnessing a still ongoing inside-out galaxy growth process. A distinctive property of the nebular component in these ETGs, classified i+, is a two-radial-zone structure, with the inner zone displaying LINER emission with a H\alpha equivalent width EW~1{\AA}, and the outer one (3{\AA}<EW<~20{\AA}) showing HII-region characteristics. Using CALIFA IFS data, we empirically demonstrate that the confinement of nebular emission to the galaxy periphery leads to a strong aperture (or, redshift) bias in spectroscopic single-fiber studies of type i+ ETGs: At low redshift (<~0.45), SDSS spectroscopy is restricted to the inner (SF-devoid LINER) zone, thereby leading to their erroneous classification as "retired" galaxies (systems lacking SF and whose faint emission is powered by pAGB stars). Only at higher z's the SDSS aperture can encompass the outer SF zone, permitting their unbiased classification as "composite SF/LINER". We also demonstrate that the principal effect of a decreasing aperture on the classification of i+ ETGs via standard BPT emission-line ratios consists in a monotonic up-right shift precisely along the upper-right wing of the "seagull" distribution. Motivated by these insights, we also investigate theoretically these biases in aperture-limited studies of inside-out growing galaxies as a function of z. To this end, we devise a simple model, which involves an outwardly propagating SF process, that reproduces the radial extent and two-zone EW distribution of i+ ETGs. By simulating on this model the spectroscopic SDSS aperture, we find that SDSS studies at z<~1 are progressively restricted to the inner LINER-zone, and miss an increasingly large portion of the H\alpha-emitting periphery.Comment: Accepted to A&A, 6 pages, 4 figure

    First survey of Wolf-Rayet star populations over the full extension of nearby galaxies observed with CALIFA

    Get PDF
    The search of extragalactic regions with conspicuous presence of Wolf-Rayet (WR) stars outside the Local Group is challenging task due to the difficulties in detecting their faint spectral features. In this exploratory work, we develop a methodology to perform an automated search of WR signatures through a pixel-by-pixel analysis of integral field spectroscopy (IFS) data belonging to the Calar Alto Legacy Integral Field Area survey, CALIFA. This technique allowed us to build the first catalogue of Wolf-Rayet rich regions with spatially-resolved information, allowing to study the properties of these complexes in a 2D context. The detection technique is based on the identification of the blue WR bump (around He II 4686 {\AA}, mainly associated to nitrogen-rich WR stars, WN) and the red WR bump (around C IV 5808 {\AA} and associated to carbon-rich WR stars, WC) using a pixel-by-pixel analysis. We identified 44 WR-rich regions with blue bumps distributed in 25 galaxies of a total of 558. The red WR bump was identified only in 5 of those regions. We found that the majority of the galaxies hosting WR populations in our sample are involved in some kind of interaction process. Half of the host galaxies share some properties with gamma-ray burst (GRB) hosts where WR stars, as potential candidates to being the progenitors of GRBs, are found. We also compared the WR properties derived from the CALIFA data with stellar population synthesis models, and confirm that simple star models are generally not able to reproduce the observations. We conclude that other effects, such as the binary star channel (which could extend the WR phase up to 10 Myr), fast rotation or other physical processes that causes the loss of observed Lyman continuum photons, are very likely affecting the derived WR properties, and hence should be considered when modelling the evolution of massive stars.Comment: 33 pages, accepted for publication in A&

    Aperture effects on the oxygen abundance determinations from CALIFA data

    Full text link
    This paper aims at providing aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([OIII]5007/Hbeta)/([NII]6583/Halpha) (O3N2) and log[NII]6583/Halpha (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star forming galaxies. We compute median growth curves of Halpha, Halpha/Hbeta, O3N2 and N2 up to 2.5R_50 and 1.5 disk R_eff. The growth curves simulate the effect of observing galaxies through apertures of varying radii. The median growth curve of the Halpha/Hbeta ratio monotonically decreases from the center towards larger radii, showing for small apertures a maximum value of ~10% larger than the integrated one. The median growth curve of N2 shows a similar behavior, decreasing from the center towards larger radii. No strong dependence is seen with the inclination, morphological type and stellar mass for these growth curves. Finally, the median growth curve of O3N2 increases monotonically with radius. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02<=z<=0.3 shows that the average difference between fiber-based and aperture corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ~11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g. below 0.5R_eff) given the high dispersion shown around the median growth curves.Comment: Accepted for publication in Ap

    Imprints of galaxy evolution on H ii regions Memory of the past uncovered by the CALIFA survey

    Full text link
    H ii regions in galaxies are the sites of star formation and thus particular places to understand the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. We use the Hii regions catalogue from the CALIFA survey (~5000 H ii regions), to explore their distribution across the classical [OIII]/Hbeta vs. [NII]/Halpha diagnostic diagram, and how it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. We compared the line ratios with predictions from photoionization models. Finally, we explore the dependences on the properties of the host galaxies, the location within those galaxies and the properties of the underlying stellar population. We found that the location within the BPT diagrams is not totally predicted by photoionization models. Indeed, it depends on the properties of the host galaxies, their galactocentric distances and the properties of the underlying stellar population. These results indicate that although H ii regions are short lived events, they are affected by the total underlying stellar population. One may say that H ii regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on the both the ionizing stellar population and the ionized gasComment: 18 pages, 8 figures, accepted for publishing in A&

    The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and Te-based literature data

    Full text link
    The use of IFS is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies both locally and at high redshift. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements. We pay special attention to the expected uncertainty of these calibrations as a function of the index value or abundance derived and the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of Te-based HII regions to date. This new dataset compiles the Te-based abundances of 603 HII regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present here a comparison between our revisited calibrations with a total of 3423 additional CALIFA HII complexes with abundances derived using the ONS calibration by Pilyugin et al. (2010). The combined analysis of Te-based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 single-ratio indicators, in terms of all statistical significance, quality and coverage of the space of parameters. In particular, we infer that these indicators show shallower abundance dependencies and statistically-significant offsets compared to those of Pettini and Pagel (2004), Nagao et al. (2006) and P\'erez-Montero and Contini (2009). The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data) reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations),respectively.Comment: 12 pages, 5 figures, accepted for publication in A&

    The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e-based literature data

    Full text link
    Astronomy and Astrophysics 559 (2013): A114 reproduced with permission from Astronomy and AstrophysicsThe use of integral field spectroscopy is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies, both locally and at high redshift. Many studies have used these fluxes to derive the gas-phase metallicity of the galaxies by applying the so-called strong-line methods. However, the metallicity indicators that these datasets use were empirically calibrated using few direct abundance data points (Te-based measurements). Furthermore, a precise determination of the prediction intervals of these indicators is commonly lacking in these calibrations. Such limitations might lead to systematic errors in determining the gas-phase metallicity, especially at high redshift, which might have a strong impact on our understanding of the chemical evolution of the Universe. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using newdirect abundance measurements. We pay special attention to (1) the expected uncertainty of these calibrations as a function of the index value or abundance derived and (2) the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of Te-based H ii regions to date. This new dataset compiles the Te-based abundances of 603 H ii regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present a comparison between our revisited calibrations with a total of 3423 additional CALIFA H ii complexes with abundances derived using the ONS calibration from the literature. The combined analysis of T e-based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 single-ratio indicators, in terms of all statistical significance, quality, and coverage of the parameters space. In particular, we infer that these indicators show shallower abundance dependencies and statistically significant offsets compared to others'. The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data), reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations), respectivelyR.A. Marino is funded by the Spanish program of International Campus of Excellence Moncloa (CEI). D. Mast thank the Plan Nacional de Investigación y Desarrollo funding programs, AYA2012-31935 of the Spanish Ministerio de Economía y Competitividad, for the support given to this project. S.F.S thanks the the Ramón y Cajal project RyC-2011-07590 of the spanish Ministerio de Economía y Competitividad, for the support giving to this project. F.F.R.O. acknowledges the Mexican National Council for Science and Technology (CONACYT) for financial support under the program Estancias Postdoctorales y Sabáticas al Extranjero para la Consolidación de Grupos de Investigación, 2010-2012. We acknowledge financial support for the ESTALLIDOS collaboration by the Spanish Ministerio de Ciencia e Innovación under grant AYA2010- 21887-C04-03. BG-L also acknowledges support from the Spanish Ministerio de Economía y Competitividad (MINECO) under grant AYA2012- 39408-C02-02. J.F.-B. acknowledges financial support from the Ramón y Cajal Program and grant AYA2010-21322-C03-02 from the Spanish Ministry of Economy and Competitiveness (MINECO), as well as to the DAGAL network from the People’s Program (Marie Curie Actions) of the European Union’s Seventh Framework Program FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313. CK has been funded by project AYA2010-21887 from the Spanish PNAYA. P.P. acknowledges support by the Fundação para a Ciência e a Tecnologia (FCT) under project FCOMP-01-0124-FEDER-029170 (Reference FCT PTDC/FIS-AST/3214/2012), funded by FCT-MEC (PIDDAC) and FEDER (COMPETE). R.M.G.D. and R.G.B. also acknowledge support from the Spanish Ministerio de Economía y Competitividad (MINECO) under grant AyA2010-15081. V.S., L.G., and A.M.M. acknowledge financial support from the Fundação para a Ciência e a Tecnologia (FCT) under program Ciência 2008 and the research grant PTDC/CTE-AST/112582/200

    CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation

    Get PDF
    We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction.We summarize the survey goals and design, including sample selection and observational strategy.We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of 600\sim600 galaxies in the Local Universe (0.005< z <0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK Integral Field Unit (IFU), with a hexagonal field-of-view of \sim1.3\sq\arcmin', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 {\AA}, using two overlapping setups (V500 and V1200), with different resolutions: R\sim850 and R\sim1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.Comment: 32 pages, 29 figures, Accepted for publishing in Astronomy and Astrophysic
    corecore