13,425 research outputs found

    Majorana vs Pseudo-Dirac Neutrinos at the ILC

    Full text link
    Neutrino masses could originate in seesaw models testable at colliders, with light mediators and an approximate lepton number symmetry. The minimal model of this type contains two quasi-degenerate Majorana fermions forming a pseudo-Dirac pair. An important question is to what extent future colliders will have sensitivity to the splitting between the Majorana components, since this quantity signals the breaking of lepton number and is connected to the light neutrino masses. We consider the production of these neutral heavy leptons at the ILC, where their displaced decays provide a golden signal: a forward-backward charge asymmetry, which depends crucially on the mass splitting between the two Majorana components. We show that this observable can constrain the mass splitting to values much lower than current bounds from neutrinoless double beta decay and natural loop corrections.Comment: 16 pages, 5 figures; v2: Minor changes, version accepted for publication in EPJ

    Heat and Poisson semigroups for Fourier-Neumann expansions

    Full text link
    Given α>−1\alpha > -1, consider the second order differential operator in (0,∞)(0,\infty), Lαf≡(x2d2dx2+(2α+3)xddx+x2+(α+1)2)(f),L_\alpha f \equiv (x^2 \frac{d^2}{dx^2} + (2\alpha+3)x \frac{d}{dx} + x^2 + (\alpha+1)^2)(f), which appears in the theory of Bessel functions. The purpose of this paper is to develop the corresponding harmonic analysis taking LαL_\alpha as the analogue to the classical Laplacian. Namely we study the boundedness properties of the heat and Poisson semigroups. These boundedness properties allow us to obtain some convergence results that can be used to solve the Cauchy problem for the corresponding heat and Poisson equations.Comment: 16 page

    Biomass partitioning and gas exchange parameters in different Musa cultivars as influenced by natural shade

    Get PDF
    Poster presented at Tropentag 2011 Development on the Margin. Bonn (Germany), 3-7 Oct 2011

    Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories

    Get PDF
    IndexaciĂłn: Web of ScienceBackground: Fluorescent nanoparticles or quantum dots (QDs) have been intensely studied for basic and applied research due to their unique size-dependent properties. There is an increasing interest in developing ecofriendly methods to synthesize these nanoparticles since they improve biocompatibility and avoid the generation of toxic byproducts. The use of biological systems, particularly prokaryotes, has emerged as a promising alternative. Recent studies indicate that QDs biosynthesis is related to factors such as cellular redox status and antioxidant defenses. Based on this, the mixture of extreme conditions of Antarctica would allow the development of natural QDs producing bacteria. Results: In this study we isolated and characterized cadmium and tellurite resistant Antarctic bacteria capable of synthesizing CdS and CdTe QDs when exposed to these oxidizing heavy metals. A time dependent change in fluorescence emission color, moving from green to red, was determined on bacterial cells exposed to metals. Biosynthesis was observed in cells grown at different temperatures and high metal concentrations. Electron microscopy analysis of treated cells revealed nanometric electron-dense elements and structures resembling membrane vesicles mostly associated to periplasmic space. Purified biosynthesized QDs displayed broad absorption and emission spectra characteristic of biogenic Cd nanoparticles. Conclusions: Our work presents a novel and simple biological approach to produce QDs at room temperature by using heavy metal resistant Antarctic bacteria, highlighting the unique properties of these microorganisms as potent natural producers of nano-scale materials and promising candidates for bioremediation purposes.http://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-0477-

    The response of Musa cultivar root systems to a tree shade gradient

    Get PDF
    Poster presented at Tropentag 2011 - Development on the Margin. Bonn (Germany), 3-7 Oct 2011

    The Ca II infrared triplet's performance as an activity indicator compared to Ca II H and K

    Full text link
    Aims. A large number of Calcium Infrared Triplet (IRT) spectra are expected from the GAIA- and CARMENES missions. Conversion of these spectra into known activity indicators will allow analysis of their temporal evolution to a better degree. We set out to find such a conversion formula and to determine its robustness. Methods. We have compared 2274 Ca II IRT spectra of active main-sequence F to K stars taken by the TIGRE telescope with those of inactive stars of the same spectral type. After normalizing and applying rotational broadening, we subtracted the comparison spectra to find the chromospheric excess flux caused by activity. We obtained the total excess flux, and compared it to established activity indices derived from the Ca II H & K lines, the spectra of which were obtained simultaneously to the infrared spectra. Results. The excess flux in the Ca II IRT is found to correlate well with RHKâ€ČR_\mathrm{HK}' and RHK+R_\mathrm{HK}^{+}, as well as SMWOS_\mathrm{MWO}, if the B−VB-V-dependency is taken into account. We find an empirical conversion formula to calculate the corresponding value of one activity indicator from the measurement of another, by comparing groups of datapoints of stars with similar B-V.Comment: 16 pages, 15 figures. Accepted for publication in Astronomy & Astrophysic

    Matrix Product States: Symmetries and Two-Body Hamiltonians

    Full text link
    We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We exploit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)--invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.Comment: PDFLatex, 12 pages and 6 figure
    • 

    corecore