187 research outputs found

    Components of Effective Leadership

    Get PDF
    [First paragraph] The effective schools literature demonstrates that the principal\u27s leadership is key to the revitalization of schools. The purpose of this article is to feature those components of leadership on which principals need to place attention and to provide suggested activities to enhance these components

    Leadership Styles

    Get PDF
    [First paragraph] Effective schools literature shows clearly that the leadership of the principal is key to the effectiveness of the school (Hoy and Miskell, 1982, and Arnn and Mangieri, 1988). To be effective, principals must use leadership styles appropriate to the situation

    Virginia\u27s Plan for Dual Enrollment

    Get PDF
    [First paragraph] There is a plan where Virginia pays Average Daily Membership (ADM) monies to a school system for a student attending a community college - and the community college collects the Full Time Equivalency (FTE) from the State. Principals must be aware of this dual enrollment plan for secondary students with community colleges approved in September of 1988. This plan provides options for students which were not available before. Dual enrollment allows high school students to accumulate credits for graduation while simultaneously earning college credit. The courses to be offered are to be mutually agreed upon by the school division and the community college

    Unit Plans

    Get PDF
    [First paragraph] Careful unit planning as a framework for daily lesson plans can help teachers individualize instruction, manage time and classroom behavior, bring cohesive-ness to a series of related daily lessons, and ultimately improve student achievement. Principals can help teachers by providing clear expectations and a consistent framework for unit planning. School and district philosophy will help determine the particular model chosen from the wide variety available. Following is one format

    Albinism Induced by Substituted Benzoic Acids

    Full text link

    Fully automated sequence alignment methods are comparable to, and much faster than, traditional methods in large data sets: an example with hepatitis B virus

    Get PDF
    Aligning sequences for phylogenetic analysis (multiple sequence alignment; MSA) is an important, but increasingly computationally expensive step with the recent surge in DNA sequence data. Much of this sequence data is publicly available, but can be extremely fragmentary (i.e., a combination of full genomes and genomic fragments), which can compound the computational issues related to MSA. Traditionally, alignments are produced with automated algorithms and then checked and/or corrected “by eye” prior to phylogenetic inference. However, this manual curation is inefficient at the data scales required of modern phylogenetics and results in alignments that are not reproducible. Recently, methods have been developed for fully automating alignments of large data sets, but it is unclear if these methods produce alignments that result in compatible phylogenies when compared to more traditional alignment approaches that combined automated and manual methods. Here we use approximately 33,000 publicly available sequences from the hepatitis B virus (HBV), a globally distributed and rapidly evolving virus, to compare different alignment approaches. Using one data set comprised exclusively of whole genomes and a second that also included sequence fragments, we compared three MSA methods: (1) a purely automated approach using traditional software, (2) an automated approach including by eye manual editing, and (3) more recent fully automated approaches. To understand how these methods affect phylogenetic results, we compared resulting tree topologies based on these different alignment methods using multiple metrics. We further determined if the monophyly of existing HBV genotypes was supported in phylogenies estimated from each alignment type and under different statistical support thresholds. Traditional and fully automated alignments produced similar HBV phylogenies. Although there was variability between branch support thresholds, allowing lower support thresholds tended to result in more differences among trees. Therefore, differences between the trees could be best explained by phylogenetic uncertainty unrelated to the MSA method used. Nevertheless, automated alignment approaches did not require human intervention and were therefore considerably less time-intensive than traditional approaches. Because of this, we conclude that fully automated algorithms for MSA are fully compatible with older methods even in extremely difficult to align data sets. Additionally, we found that most HBV diagnostic genotypes did not correspond to evolutionarily-sound groups, regardless of alignment type and support threshold. This suggests there may be errors in genotype classification in the database or that HBV genotypes may need a revision

    Effects of an attention demanding task on dynamic stability during treadmill walking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>People exhibit increased difficulty balancing when they perform secondary attention-distracting tasks while walking. However, a previous study by Grabiner and Troy (<it>J. Neuroengineering Rehabil</it>., 2005) found that young healthy subjects performing a concurrent Stroop task while walking on a motorized treadmill exhibited <it>decreased </it>step width variability. However, measures of variability do not directly quantify how a system responds to perturbations. This study re-analyzed data from Grabiner and Troy 2005 to determine if performing the concurrent Stroop task directly affected the dynamic stability of walking in these same subjects.</p> <p>Methods</p> <p>Thirteen healthy volunteers walked on a motorized treadmill at their self-selected constant speed for 10 minutes both while performing the Stroop test and during undisturbed walking. This Stroop test consisted of projecting images of the name of one color, printed in text of a different color, onto a wall and asking subjects to verbally identify the color of the text. Three-dimensional motions of a marker attached to the base of the neck (C5/T1) were recorded. Marker velocities were calculated over 3 equal intervals of 200 sec each in each direction. Mean variability was calculated for each time series as the average standard deviation across all strides. Both "local" and "orbital" dynamic stability were quantified for each time series using previously established methods. These measures directly quantify how quickly small perturbations grow or decay, either continuously in real time (local) or discretely from one cycle to the next (orbital). Differences between Stroop and Control trials were evaluated using a 2-factor repeated measures ANOVA.</p> <p>Results</p> <p>Mean variability of trunk movements was significantly reduced during the Stroop tests compared to normal walking. Conversely, local and orbital stability results were mixed: some measures showed slight increases, while others showed slight decreases. In many cases, different subjects responded differently to the Stroop test. While some of our comparisons reached statistical significance, many did not. In general, measures of variability and dynamic stability reflected different properties of walking dynamics, consistent with previous findings.</p> <p>Conclusion</p> <p>These findings demonstrate that the decreased movement variability associated with the Stroop task did <it>not </it>translate to greater dynamic stability.</p

    Geographic population structure analysis of worldwide human populations infers their biogeographical origins

    Get PDF
    The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing

    Expression of emotional arousal in two different piglet call types

    Get PDF
    Humans as well as many animal species reveal their emotional state in their voice. Vocal features show strikingly similar correlation patterns with emotional states across mammalian species, suggesting that the vocal expression of emotion follows highly conserved signalling rules. To fully understand the principles of emotional signalling in mammals it is, however, necessary to also account for any inconsistencies in the way that they are acoustically encoded. Here we investigate whether the expression of emotions differs between call types produced by the same species. We compare the acoustic structure of two common piglet calls—the scream (a distress call) and the grunt (a contact call)—across three levels of arousal in a negative situation. We find that while the central frequency of calls increases with arousal in both call types, the amplitude and tonal quality (harmonic-to-noise ratio) show contrasting patterns: as arousal increased, the intensity also increased in screams, but not in grunts, while the harmonicity increased in screams but decreased in grunts. Our results suggest that the expression of arousal depends on the function and acoustic specificity of the call type. The fact that more vocal features varied with arousal in scream calls than in grunts is consistent with the idea that distress calls have evolved to convey information about emotional arousal

    Identification of elderly fallers by muscle strength measures

    Get PDF
    For efficient prevention of falls among older adults, individuals at a high risk of falling need to be identified. In this study, we searched for muscle strength measures that best identified those individuals who would fall after a gait perturbation and those who recovered their balance. Seventeen healthy older adults performed a range of muscle strength tests. We measured maximum and rate of development of ankle plantar flexion moment, knee extension moment and whole leg push-off force, as well as maximum jump height and hand grip strength. Subsequently, their capacity to regain balance after tripping over an obstacle was determined experimentally. Seven of the participants were classified as fallers based on the tripping outcome. Maximum isometric push-off force in a leg press apparatus was the best measure to identify the fallers, as cross-validation of a discriminant model with this variable resulted in the best classification (86% sensitivity and 90% specificity). Jump height and hand grip strength were strongly correlated to leg press force (r = 0.82 and 0.59, respectively) and can also be used to identify fallers, although with slightly lower specificity. These results indicate that whole leg extension strength is associated with the ability to prevent a fall after a gait perturbation and might be used to identify the elderly at risk of falling
    • …
    corecore